
GXS EDI Services

Expedite Base for Windows® 
Programming Guide

Version 4 Release 7

GC34-2253-06



Seventh Edition (November 2005)

This edition applies to Expedite Base for Windows, Version 4 Release 7, and replaces GC34-2253-05.

© Copyright GXS, Inc. 1998, 2005. All rights reserved.
Government Users Restricted Rights - Use, duplication, or disclosure restricted.



© Copyright GXS, Inc. 1998, 2005
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents

To the reader  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Who should read this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Terminology conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Type conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
How this book is organized  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Related books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Introducing Expedite Base for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Migrating to Version 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Understanding Information Exchange  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Using accounts, user IDs, and passwords   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Understanding an Information Exchange session   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Sending and receiving data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Identifying Information Exchange error messages   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Requesting Information Exchange acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Providing security   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Working with libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Connecting to the network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Understanding Information Exchange Administration Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Installing Expedite Base for Windows   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Understanding what you need to use Expedite Base for Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Running the installation program   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Understanding Expedite Base for Windows files   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Understanding the Expedite Base for Windows configuration commands in the WIN.INI . . . . . . . . . . . . 21
Setting the program screen display   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Getting a quick start   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Modifying the sample profile command file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Modifying the sample message command file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Running a sample session   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
iii



Expedite Base for Windows Programming Guide
Understanding Expedite Base for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Understanding command syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Understanding the profile command file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Understanding the profile response file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Understanding the message command file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Understanding the message response file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Understanding the common data header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Processing the message response file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Using the temporary response file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Designing your interface   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Understanding the users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Understanding how your interface interacts with Expedite Base for Windows  . . . . . . . . . . . . . . . . . . . . . 46
Programming your application to control Expedite Base for Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Understanding Expedite Base for Windows programming considerations   . . . . . . . . . . . . . . . . . . . . . . . . 47
Understanding installation considerations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Understanding interapplication communication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Setting your application to configure the WIN.INI file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Understanding message values returned after sending a message   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Setting your application to receive Expedite Base for Windows messages  . . . . . . . . . . . . . . . . . . . . . . . . 52
Reviewing an example of an application interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Other considerations for your application   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Sending and receiving files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Addressing files   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Sending and receiving e-mail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Understanding ASCII text and binary files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Understanding the translate table   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Recovery levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery   . . . . 63
Using session-level recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Understanding post-session processing for session-level recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Using multiple START and END commands with session-level recovery   . . . . . . . . . . . . . . . . . . . . . . . . 82
Receiving multiple files   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Receiving specific files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SEND and RECEIVE file number limits   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Examples of using Expedite Base for Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Sending and receiving EDI data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Understanding how the network sends EDI data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Understanding how Expedite Base for Windows sends EDI data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Using EDI envelopes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Resolving EDI destinations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Specifying Information Exchange control fields   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Receiving EDI data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Creating tables for destination resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Using checkpoint-level, file-level, and user-initiated recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery   . . . 118
Using session-level recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Understanding post-session processing for session-level recovery   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Using multiple START and END commands with session-level recovery   . . . . . . . . . . . . . . . . . . . . . . . 136
Receiving multiple files   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Receiving specific files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
iv



Contents
SENDEDI and RECEIVEEDI file number limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Integrating with an EDI translator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Examples of sending and receiving EDI data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Using Expedite Base for Windows profile commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Creating profiles   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Working with profile commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Using Expedite Base for Windows message commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Understanding command syntax examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Working with message commands   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Using Expedite Base for Windows message response records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
AUTOEND record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
AUTOSTART record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
AVAILABLE record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
LIBRARYLIST record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
MEMBERLIST record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
MEMBERPUT record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
MOVED record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
NOTSENT record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
RECEIVED record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
RETURN record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
SENT record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
SESSIONEND record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
STARTED record   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
WARNING record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Using additional features   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Compressing and decompressing data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Using audit trails   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Message audit record formats   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Querying a mailbox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Using acknowledgments   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Working with libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Archiving and retrieving files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Traveling User feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Understanding validations, payment levels, and authorizations with trading partners    . . . . . . . . . . . . . . 276
Using command line parameters with the IEBASE command   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Running Expedite Base for Windows in a separate directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Communicating with users on different operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Using the common data header   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Communicating with interfaces that do not support the CDH   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Sending files to an ASCII operating system   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Receiving files from an ASCII operating system   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Sending files to an EBCDIC operating system   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Receiving files from an EBCDIC operating system   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Using alternate translate tables   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Examples of sending and receiving files on different operating systems   . . . . . . . . . . . . . . . . . . . . . . . . . 285

The Expedite Base for Windows main window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Main window example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
v



Expedite Base for Windows Programming Guide
Display for a session with a delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Using the display status script   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Using the modem setup program and modem scripts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Running the modem setup program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Customizing the modem list in the modem setup program   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Creating modem scripts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Using labels in modem scripts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Using variables in modem scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Using modem script commands   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Sample modem scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Using modem initialization and reset scripts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Using a customized logon screen   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Using the connectivity log and trace files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Using the connectivity log   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Using the trace files   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Learning from examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Using the link trace file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Using TCP/IP communications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Preparing for TCP/IP communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Updating hostname.fil  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
TCP/IP entry in the WIN.INI file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Expedite Base for Windows error codes and messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Expedite Base for Windows completion codes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Expedite Base for Windows return codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Common data header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Reserved file names and user classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Reserved file names for PATH statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Reserved file names for PATH parameter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Reserved file names for IEPATH parameter   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Reserved file name for current directory   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Reserved user classes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Information Exchange translate table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
ASCII TO EBCDIC   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
EBCDIC TO ASCII   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Using data compression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Understanding the Comm-Press files used with Expedite Base for Windows  . . . . . . . . . . . . . . . . . . . . . 463
Compressing files with COMPRESS(Y)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Compressing files with COMPRESS(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Decompressing received compressed files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Expedite Base for Windows considerations when using COMPRESS(Y) OR COMPRESS(T)  . . . . . . . 467
Restart and recovery considerations with Comm-Press  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Error messages and return codes for data compression   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
vi



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To the reader

This book gives you the information necessary to program and use Expedite Base for Windows®     
for your company’s applications. Expedite Base for Windows is an Information Exchange based 
communication program that enables you to transmit data files and messages to and from Infor-
mation Exchange. Users of Expedite Base for Windows can use the features of Information 
Exchange through a network. 

Who should read this book
This book is written for experienced Windows programmers familiar with Information Exchange 
who want to write Windows-based 32-bit application programs to interface with Expedite Base 
for Windows. This book is also for users who want to use Expedite Base for Windows to transmit 
data, files, and messages to and from Information Exchange.

Terminology conventions 
In this book, the following terms have special meanings or usages.

■ Network refers to the network that you use to communicate with Information Exchange, 
such as the Internet or the network provided by AT&T Global Network Services.

■ Dialer and IP dialer have been replaced by AT&T Net Client or Net Client.

■ Baud rate and data rate are synonymous.

■ Compression refers to data compression using the bTrade product, TDAccess, which may 
not be available in all countries. This product was formerly known as Comm-Press and 
where this product name is used, it refers to TDAccess.

■ Asynchronous communications through a network gateway, network gateway communi-
cation, and using a network communication gateway means setting the COMMTYPE 
parameter to A on the TRANSMIT command.
© Copyright GXS, Inc. 1998, 2005 vii



Expedite Base for Windows Programming Guide
Type conventions
Understanding the type conventions used in this book can help you learn the material covered.

All application program interface (API) commands and parameters are displayed in small, 
uppercase letters; for example, AUTOMODE. In the examples, commands and parameters appear 
in lowercase.

In the step-by-step instructions in this book, boldfaced type is used to instruct you to:

■ Type in specific information. For example, “Type a:\setup.exe.”

■ Press specific keys. For example, “Press Enter.”

■ Select an item on a window. For example, “Select OK.”

Blank lines have been added to some examples to help you use them. So, some examples in the 
book may not look exactly like what you see when you use Expedite Base.

In Chapter 9, “Using Expedite Base for Windows message commands,’’ the command format 
examples have the following type conventions:

■ Required parameters and values are boldface type.

■ Default values are underlined.

■ Parameter values are italicized.

In general, you do not have to worry about case when typing commands and parameters, and can 
use uppercase or lowercase letters. However, there are two exceptions: file names and path 
names are case-sensitive.

The following is an example of type conventions described above:

     send fileid(file ID) account(account) userid(user ID) class(class) priority(blank|i|p);

Words that are in the glossary are shown in italics the first time they are used in the body of the 
book.

How this book is organized
This book contains the following:

■ Chapter 1, “Introducing Expedite Base for Windows,’’ introduces Expedite Base for 
Windows and Information Exchange. It provides an overview of the functions in Expedite 
Base for Windows.

■ Chapter 2, “Installing Expedite Base for Windows,’’ provides hardware and software 
requirements, lists installation instructions, and describes the files in Expedite Base for 
Windows.

■ Chapter 3, “Getting a quick start,’’ explains how to run a session with Information Exchange 
using Expedite Base for Windows sample files. It provides instructions for copying, 
renaming, modifying, and running these files.

NOTE: When blank is listed as a variable, it refers to a blank space and not the 
actual typed word.
viii



To the reader
■ Chapter 4, “Understanding Expedite Base for Windows,’’ describes the API command 
syntax and discusses command and response files. It also provides examples of these files 
and discusses the interaction between Expedite Base for Windows and your application.

■ Chapter 5, “Designing your interface,’’ explains the Expedite Base functions specific to the 
Windows environment and how to set up your application program to control Expedite Base 
operations.

■ Chapter 6, “Sending and receiving files,’’ describes how to address files and explains Infor-
mation Exchange’s data recovery methods. It also provides information on sending and 
receiving text and binary files, and it provides examples that illustrate how you can use 
Expedite Base for Windows.

■ Chapter 7, “Sending and receiving EDI data,’’ explains how Information Exchange’s data 
recovery methods work when you transfer electronic data interchange (EDI) data. It also 
provides information on sending and receiving EDI-formatted data and provides examples 
that illustrate how you can use Expedite Base for Windows.

■ Chapter 8, “Using Expedite Base for Windows profile commands,’’ explains how to create 
profiles and describes the profile commands and profile response records. It also provides 
information on changing your password and discusses the Extended Security Option (ESO).

■ Chapter 9, “Using Expedite Base for Windows message commands,’’ provides detailed 
information about the message commands.

■ Chapter 10, “Using Expedite Base for Windows message response records,’’ describes the 
message response records and their formats.

■ Chapter 11, “Using additional features,’’ describes other features of Expedite Base for 
Windows, such as audit trails, mailbox queries, acknowledgments, libraries, and archiving.

■ Chapter 12, “Communicating with users on different operating systems,’’ provides infor-
mation on transferring files to other systems, including older Information Exchange inter-
faces, ASCII, and EBCDIC.

■ Chapter 13, “The Expedite Base for Windows main window,’’ describes the session status 
picture and status messages.

■ Chapter 14, “Using the modem setup program and modem scripts,’’ describes the modem 
setup program. It also provides information about modem commands and scripts.

■ Chapter 15, “Using the connectivity log and trace files,’’ describes how to use the connec-
tivity log and trace files to obtain detailed processing information on Expedite Base for 
Windows.

■ Chapter 16, “Using TCP/IP communications,’’ describes how to establish TCP/IP communi-
cations. It provides information on using Expedite Base for Windows for TCP/IP dial and 
leased-line communications.

■ Appendix A, “Expedite Base for Windows error codes and messages,’’ contains all Expedite 
Base for Windows return codes and user actions.

■ Appendix B, “Common data header,’’ provides a description of the CDH fields.

■ Appendix C, “Reserved file names and user classes,’’ describes the reserved file names and 
user classes that Expedite Base for Windows may create or reference.
ix



Expedite Base for Windows Programming Guide
■ Appendix D, “Information Exchange translate table,’’ provides Information Exchange 
ASCII-to-EBCDIC and EBCDIC-to-ASCII translate tables.

■ Appendix E, “Using data compression,’’ describes the use of compression software to 
compress and decompress data with Expedite products.

This book also includes a glossary and an index.

Summary of changes
EDI Services Expedite Base for Windows software is enhanced to use client-authenticated 
Secure Sockets Layer (SSL) with TCP/IP communications over both the AT&T Global Network 
and the Internet to connect to the Information Exchange mailbox component of G International 
EDI Services, formerly IBM EDI Services.

EDI Services customers who want to use the value-added features provided by an Expedite 
communication client can now take advantage of enhanced authentication and data privacy when 
connecting to Information Exchange using this new SSL TCP/IP connectivity solution. For more 
information, see chapter 1.

Related books
The following books contain information related to the topics covered in this guide:

■ Expedite Base Command Reference, GC34-2328

■ Information Exchange Administration Mailbox Command Reference, GC34-2260

■ Information Exchange Administration Services Messages and Codes, GC34-2323

■ Information Exchange Administration Services User’s Guide, GC34-2221

■ Information Exchange Charges Reference, GX66-0653

■ Information Exchange Messages and Formats, GC34-2324

For your convenience, these documents can be viewed on the EDI Services Web site library page 
at:  https://www.gxsolc.com/public/EDI/us/support/Library/LibraryIndex.htm.
x

https://www.gxsolc.com/public/EDI/us/support/Library/LibraryIndex.htm


© Copyright GXS, Inc. 1998, 2005
Chapter 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introducing Expedite Base for Windows 

Information Exchange, the electronic mailbox component of G International EDI Services, 
formerly IBM EDI services, enables you to send information to and receive information from 
trading partners. Expedite Base for Windows is a 32-bit application that provides the interface 
that makes it possible to use Information Exchange from a Windows environment.

Expedite Base for Windows uses Information Exchange to deliver and receive data, such as 
electronic data interchange (EDI) data. Expedite Base for Windows runs as an application on a 
Windows system, which uses American National Standards Code for Information Interchange 
(ASCII). It can communicate with some extended binary coded decimal interchange code 
(EBCDIC) systems as well as with other ASCII computers through Information Exchange.

To communicate with Expedite Base for Windows and transfer data files to and from Information 
Exchange, you use application program interface (API) commands. These commands are 
contained in control files.

Migrating to Version 4.7
If you are upgrading to Expedite Base for Windows Version 4.7 from a previous version of 
Expedite Base for Windows, it is not necessary to uninstall the previous version. Most of the 
issues involved in upgrading are resolved during the installation. 

If you are upgrading from a previous version, you may choose to install Expedite Base for 
Windows in the same directory; if so, you may be prompted during the installation to decide 
whether or not to back up or overwrite certain files. The installation program will check to make 
sure a session.fil file does not exist. If the file does exist, you will have the option to abort the 
installation or delete the file. The session.fil file indicates the previous session with Information 
Exchange was incomplete. The display.scr file will be updated during the installation of Expedite 
Base for Windows. You will be given the option to save the display.scr file in a backup directory. 
If you have modified your display.scr file, see “Setting the program screen display” on page 22 
for more information about modifying that file.
1



Expedite Base for Windows Programing Guide

Understanding Information Exchange
Understanding Information Exchange 
Information Exchange provides a means of sending, storing, and retrieving information electron-
ically and makes it possible for users on dissimilar computer systems to communicate with each 
other. By establishing a computer-to-computer communication network between different 
locations, Information Exchange can both speed and simplify the delivery of files, EDI 
envelopes, and other data.

Information Exchange is a service of  GXS, formerly IBM Global Services. With Information 
Exchange as an alternative to terminal-to-computer communication, you send files to a mailbox 
and retrieve the files waiting for you in a mailbox.

Through the network, Information Exchange can link the geographically scattered locations of a 
single company or of different companies; for example, a manufacturing company can use Infor-
mation Exchange to communicate with its suppliers or distributors.

Your computer can communicate with one or more Information Exchange addresses through a 
single Information Exchange session. Global Services assigns Information Exchange addresses 
during registration; each Information Exchange address is independent of other Information 
Exchange addresses.

You can access Information Exchange as shown in the following figure. It shows how Expedite 
Base for Windows, installed on a PC running Windows and your user applications, communi-
cates to the network and Information Exchange through a modem.

Figure 1. User access to Information Exchange

Using accounts, user IDs, and passwords 
In order to connect to Information Exchange, you must have two sets of corresponding accounts, 
user IDs, and passwords defined in the Expedite Base for Windows profile. The first of these sets 
allows you to log on to the network. The individual fields in this set are the network account, user 
ID, and password. Expedite Base for Windows requires these three values before you can log on 
to the network.

The second of these sets allows you to log on to Information Exchange on the network. These 
fields are the Information Exchange account, user ID, and password. Expedite Base for Windows 
requires these values before you can connect to Information Exchange.

You provide both sets of accounts, user IDs, and passwords to Expedite Base for Windows in the 
IDENTIFY command. For more information on the IDENTIFY command, see Chapter 8, “Using 
Expedite Base for Windows profile commands.’’

User Application
 Expedite Base

Information
Exchange

 for Windows
Windows Connection
2



Chapter 1. Introducing Expedite Base for Windows

Understanding an Information Exchange session
Understanding an Information Exchange session 
This overview provides a list of the activities you perform and the activities Expedite Base for 
Windows performs. This book discusses each of these activities in detail.

You perform the following activities:

■ Create a profile command file (basein.pro) or make the necessary changes to an existing one. 
The profile command file provides information about you and information that Expedite 
Base for Windows needs to connect to the network. For detailed information on profiles, see 
Chapter 8, “Using Expedite Base for Windows profile commands.’’

■ Specify message commands, such as SEND and RECEIVE, in the message command file 
(basein.msg). The commands in this file tell Expedite Base for Windows what to do during a 
session. For detailed information on message commands, see Chapter 9, “Using Expedite 
Base for Windows message commands.’’

■ Run the Expedite Base for Windows program. Either type iebase on the Windows command 
line and press Enter, or call the program from another application.

When you run the Expedite Base for Windows program it:

■ Processes the profile commands in basein.pro and writes responses to the profile response 
file (baseout.pro).

■ Establishes a connection to the network, using your network account, user ID, and password 
in basein.pro when necessary.

■ Logs on to Information Exchange using your Information Exchange account, user ID, and 
password in basein.pro and starts a session.

■ Processes the message commands in basein.msg and writes responses to the message 
response file (baseout.msg). For detailed information on message response records, see 
Chapter 10, “Using Expedite Base for Windows message response records.’’

■ Ends the Information Exchange session, logs off the network, and terminates the connection.

■ Writes the final return code to baseout.msg.

After an Information Exchange session, you should review baseout.msg to see that all commands 
processed correctly. If errors occurred, Expedite Base for Windows writes return codes and error 
messages to baseout.msg. For detailed information, see Appendix A, “Expedite Base for 
Windows error codes and messages.’’

NOTE: An Information Exchange session begins when you log on to Information 
Exchange, includes processing the commands, and ends when you log off.
3



Expedite Base for Windows Programing Guide

Sending and receiving data
Sending and receiving data 
Two sets of commands enable you to send and receive files, EDI data, and electronic mail (e-
mail) using Expedite Base for Windows:

■ SEND - RECEIVE
■ SENDEDI - RECEIVEEDI

Use the SEND and RECEIVE commands in basein.msg for files and e-mail. Use the SENDEDI and 
RECEIVEEDI commands for EDI data.

You can use Expedite Base for Windows to send text or binary data to a trading partner. Text data 
can usually be read by a person, while binary data can be read by a computer. Executable 
programs and computer drawings are examples of binary data. To send text or binary data, use 
the SEND command; to receive this data, use the RECEIVE command.

Use the SENDEDI command to transmit multiple EDI envelopes with different addresses from a 
single file with a single command. Information in this file can consist of any combination of 
ANSI X12, Uniform Communications Standard (UCS), Electronic Data Interchange For Admin-
istration, Commerce, and Transport (EDIFACT), and United Nations/Trade Data Interchange 
(UN/TDI) data. SENDEDI resolves the destinations of the different pieces of information from the 
EDI data, so you do not have to retype existing destination information.

Use the RECEIVEEDI command to receive multiple EDI envelopes containing different types of 
data with a single command.

For more information on the commands to send and receive data, see Chapter 9, “Using Expedite 
Base for Windows message commands.’’

Transferring files 
A file is data that you name and store as a unit. The data in a file is usually related or grouped 
together; for example, customer names and addresses.

The method Expedite Base for Windows uses to send files depends on the data type. The data in 
a PC file is in ASCII format, and can be either text data or binary data. Text data can be read by a 
person while binary data is read by a computer. If the data is text, Expedite Base for Windows 
translates it from ASCII to EBCDIC when it sends the data to Information Exchange. If the data 
is binary, Expedite Base for Windows does not translate the data.

For more information on transferring files, Chapter 6, “Sending and receiving files.’’

Transferring EDI data 
Electronic Data Interchange (EDI) is the electronic exchange of structured business documents 
between computer systems using a standard format. EDI uses data-layout standards so that the 
sending and receiving systems can recognize the data format. Once trading partners agree to 
exchange data formatted to standards, they can exchange documents electronically instead of 
sending them through the mail.

For more information on transferring EDI data, see Chapter 7, “Sending and receiving EDI 
data.’’
4



Chapter 1. Introducing Expedite Base for Windows

Identifying Information Exchange error messages
Transferring electronic mail 
Electronic mail (e-mail) is correspondence in the form of files that you transmit over a computer 
network. Different software packages handle e-mail differently. The important thing is that the e-
mail file looks the same to the receiver as it did to the sender.

In Expedite Base for Windows, e-mail files are made up of 79-byte records, padded with blanks 
if necessary. The 79-byte records are each followed by the characters that normally delimit 
records for the type of platform being used. For example, in Expedite Base for Windows each 79-
byte record is delimited by CRLF characters.

In order to identify the file as being electronic mail, the Expedite family of products uses the user 
class FFMSG001. This way, the receiving system knows how to format the e-mail records when 
the data is received.

To create an e-mail file, use an editor to create the text for the file, making sure each line of text 
is not longer than 79 bytes and ends with CRLF characters. To send the file, use the SEND 
command with the FORMAT(Y) parameter. FORMAT(Y) tells Expedite Base for Windows to:

■ Pad each line of text with blanks up to 79 bytes, or split lines that are greater than 79 bytes.
■ Add CRLF characters to each line.
■ Send the file with a user class of FFMSG001.

When you receive an electronic mail file, use the RECEIVE command with the FORMAT(Y) 
parameter so that the file is properly received in the Expedite e-mail format for you to view.

Identifying Information Exchange error messages 
When Information Exchange generates error messages, it places them in your mailbox with a 
sending account ID of *SYSTEM* and a user ID of *ERRMSG*. The most common reason for 
an error message is that Information Exchange is unable to deliver a file.

Requesting Information Exchange acknowledgments 
Although they are not error messages, Information Exchange acknowledgments also have a 
sending account ID of *SYSTEM* and user ID of *ERRMSG*. An acknowledgment is placed in 
your mailbox with information about files you have sent. The three types of acknowledgments 
you can request using the ACK parameter in the SEND and SENDEDI commands are:

To receive these acknowledgments, you must use the RECEIVE command. For more information 
on acknowledgments, see “Using acknowledgments” on page 267.

NOTE: You can use the CLASS parameter on the SEND command to specify a 
user class other than FFMSG001. However, the receiving system will not 
automatically recognize the file as having the Expedite e-mail format.

receipt Information Exchange generates a receipt acknowledgment when a file reaches the 
receiver’s mailbox after a successful Expedite Base for Windows session.

delivery Information Exchange generates a delivery acknowledgment when a destination user 
receives a file from the Information Exchange mailbox.

purge Information Exchange generates a purge acknowledgment when a file is purged from 
the receiver’s mailbox.
5



Expedite Base for Windows Programing Guide

Providing security
Providing security 
The network provides security at the network-access level, the application-selection level, and 
the data-access level. You should understand that network security features operate within a 
widely used data processing environment. Information Exchange can protect users only if those 
users safeguard security controls. You must change passwords and profile authorizations at 
recommended intervals to ensure mailbox security.

Secure socket layer (SSL) access is available for customers that want to use certificates to 
identify authorized users. To enable SSL, you must use the SSL command and change param-
eters on the IDENTIFY or START commands.

Working with libraries 
A library is a place to store information for an extended period of time. Unlike files in a user’s 
mailbox, information in a library is not deleted automatically after a certain amount of time. 
Libraries are made up of library members, which contain the information you want to store. To 
use libraries in Expedite Base for Windows:

1. Create the library using Information Exchange Administration Services.

2. Use the GETMEMBER and PUTMEMBER commands to retrieve library members and place 
them in a mailbox, or place library members in a library.

3. Use the LISTLIBRARIES and LISTMEMBERS commands to identify libraries and members to 
which you have access.

For more information on libraries, see “Working with libraries” on page 268 and the Information 
Exchange Administration Services User’s Guide. For information on using acknowledgments 
with libraries, see “Using acknowledgments with libraries” on page 270. 

Connecting to the network 
You can select one of three methods to connect to the network: asynchronous dial communi-
cation, TCP/IP dial communication, or TCP/IP leased-line communication.

Asynchronous communication involves the use of an asynchronous modem to dial the network. 
You should dial into the network communication gateway by specifying COMMTYPE(A) on the 
TRANSMIT command. 

TCP/IP communication involves the use of the AT&T Net Client, a leased line, or an Internet 
connection to communicate with the network. Secure socket layer (SSL) access is available for 
customers that want to use certificates to identify authorized users. For more information on 
TCP/IP communication, see Chapter 16, “Using TCP/IP communications.’’

Understanding Information Exchange Administration Services 
Information Exchange Administration Services lets the Information Exchange Service Adminis-
trators coordinate the use of Information Exchange within their companies. For example, admin-
istrators use it to set up trading partners for their users so they can communicate with users in 
other companies. It is strongly recommended that at least one person in each account has access 
to Information Exchange Administration Services.
6



Chapter 1. Introducing Expedite Base for Windows

Understanding Information Exchange Administration Services
■ To access Information Exchange Administration Services via the network, you need a full-
screen emulator product or a network-attached terminal. For more information, see the Infor-
mation Exchange Administration Services User’s Guide.

■ To access Information Exchange Administration Services for the Web via the Internet, you 
need a Web browser. Information Exchange Administration Services for the Web gives you 
the ability to check the status of mail in your Information Exchange mailbox, retrieve 
messages from archive, review audit trails, add and modify trading partners, create and view 
alias tables, review session traces, and work with user profiles. Information Exchange 
Administration Services for the Web uses a menu structure in which you select a category, 
such as Messages, and the category then opens and displays the functions that you can 
select.

Expedite Base for Windows does not provide access to Information Exchange Administration 
Services, but it provides the ability to perform some of its functions. Following are some of the 
functions that Information Exchange Administration Services provides. The functions in italics 
are functions that Expedite Base for Windows also provides.

■ Changing user profiles
■ Creating and updating distribution lists
■ Creating and updating alias tables
■ Maintaining trading partner lists
■ Maintaining payment levels
■ Viewing and selecting archive information
■ Retrieving archived messages
■ Retrieving audit trails
■ Viewing the contents of a mailbox
■ Viewing session traces
■ Creating libraries
■ Listing libraries and library members
■ Retrieving library members
■ Resetting user passwords
■ Resetting user sessions
7



Expedite Base for Windows Programing Guide

Understanding Information Exchange Administration Services
8



© Copyright GXS, Inc. 1998, 2005
Chapter 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installing Expedite Base for Windows 

This section provides information about:

■ What you need to use Expedite Base for Windows

■ Running the installation program

■ Setting up the AT&T Net Client

■ Running Expedite Base for Windows

■ Understanding Expedite Base for Windows files

■ Understanding the Expedite Base for Windows configuration commands in the WIN.INI file

Understanding what you need to use Expedite Base for Windows 
The following sections discuss the Expedite Base for Windows operating environment and 
connectivity requirements. The hardware and software requirements are listed below.

Hardware and software requirements 
The following hardware is required to use Expedite Base for Windows:

■ Any workstation or compatible capable of running Windows 2000, 2003 Server or XP

■ Pentium 166 Hz or faster processor with at least 125 Mb of free disk space and at least 32 
Mb of RAM

■ If using SSL over the Internet to access Information Exchange, access to the Internet using 
the Internet service provider (ISP) of your choice
9



Expedite Base for Windows Programming Guide

Running the installation program
Expedite Base for Windows 4.7.1 can support communication with Information Exchange using 
the following methods:

■ Asynchronous communication

■ TCP/IPdial access

Customers can choose the communications protocol that is most appropriate for their needs.

The following software is required to run Expedite Base for Windows:

■ One of the supported operating systems:
• Windows 2000
• Windows 2003 Server
• Windows XP

■ For TCP/IP communications using SSL over the Internet, an X.509 certificate is required. 
For more information, see “Running the installation program” .

■ For TCP/IP communication, the default TCP/IP stack provided with the operating system 
will be used (applies only to the supported Windows platforms listed above).

■ The AT&T Net Client Version 5 unless you are connecting over the Internet using SSL.

Connectivity requirements 
Expedite Base for Windows can communicate with Information Exchange in the following ways:

■ Using asynchronous communications (through the AT&T Global Network)

■ Using TCP/IP communications (leased-line and dial), available through the AT&T Global 
Network or the Internet

■ If using SSL over the Internet to access Information Exchange:

• Access to the Internet using the Internet service provider (ISP) of your choice
• Installation of a firewall if required by your business environment

Running the installation program 
The following sections explain how to install Expedite Base on a workstation using the Expedite 
Base setup program. You must download the program file from the Expedite software download 
page before you can install the program.

NOTE: Only users with Administrator privileges can install Expedite Base for Windows on a 
Windows system.

In addition, you must create and set up an X.509 certificate. For detailed instructions, refer to the 
Expedite Base iKEYMAN setup document, available at URL: 
https://www.gxsolc.com/public/EDI/us/support/Products/expedite/
Exp_Base_iKEYMAN_setup.pdf.

Installing Expedite Base for Windows
1. Open your browser and navigate to https://www.gxsolc.com/public/EDI/us/support/

Downloads/downloads_index.html.
10

https://www.gxsolc.com/public/EDI/us/support/Products/expedite/Exp_Base_iKEYMAN_setup.pdf
https://www.gxsolc.com/public/EDI/us/support/Downloads/downloads_index.html
https://www.gxsolc.com/public/EDI/us/support/Downloads/downloads_index.html


Chapter 2. Installing Expedite Base for Windows

Running the installation program
2. Before you can download the software, you will need to provide some information about 
yourself and also accept the terms and conditions of the GXS Program License Agreement.

3. From the temporary directory on your computer, double-click the Expedite Base for 
Windows .exe file to launch it.

When you launch the executable file, it extracts the program files to a temporary folder and 
automatically starts the setup program. The setup program lunches a batch file that installs 
Java run time (JRE), followed by the GSKIT program.

4. When this process is complete, a browser window opens that instructs you to run the 
ikmsetup.bat file. Running this batch file is a one-time setup task that must be done when 
your computer reboots after the installation process has completed.  Read the text, and then 
close the window.

The installation program continues, and launches the Expedite Base for Windows setup 
program.

5. When prompted, provide the drive and directory where you want to install the application.

You can accept the default drive and directory name displayed by the application, or 
designate a different destination drive and directory name.

6. Click Next.

The setup program searches the directory for a session.fil file and any script or message 
files.

If any of these files are found, the setup program prompts you with instructions on how to 
handle these files. If iebase.pro file is found, the setup program automatically renames it to 
iebase16.pro and saves it in a backup directory.

7. When prompted, fill in the program group where you want the program icons to display.

You can accept the default program group, or fill in a different program group name.

8. Click Next.

A dialog box displays, asking if you are going to install the dialer (to connect through the 
AT&T Global Network) or connect from the Internet.

NOTE: Your user ID must be enabled for TCP/IP access for both options.

9. Do one of the following:

• If you plan to use standard TCP/IP or SSL to connect through the AT&T Global 
Network, click Yes. The AT&T Net Client Software License Agreement displays.  Click 
Yes.  Read the license agreement, and then click Yes to accept the terms of the 
agreement and continue with the installation.

• If you plan to use SSL with TCP/IP from the Internet, click No. The AT&T Net Client 
program is not installed since you will be connecting from the Internet.

The Information Exchange System window opens.

10. Select your Information Exchange system (SSL TCP/IP from the Internet, SSL TCP/IP, or 
non-SSL TCI/IP through the AT&T MDNS). The default is non-SSL TCP/IP. 
11



Expedite Base for Windows Programming Guide

Running the installation program
11. Click Next.

The appropriate program files are copied to your hard drive, and the Installation Complete 
window opens.

12. If you would like to view the readme file, select the checkbox. Click Finish.

If you selected to view the readme file, the file opens; otherwise, you are returned to your 
starting point. The Expedite Base for Windows program has been installed. A message box 
displays asking you to reboot your system.

13. Click OK, and reboot your system.

14. This step is required to ensure that iKEYMAN can be launched successfully and that 
Expedite Base for Windows functions properly.

15. Run the iKEYMAN batch file in one of the following three ways:

• From Start > Programs > Expedite Base for Windows > iKEYMAN Setup

• From the command line, type run ikmsetup.bat.

• From Windows Explorer, navigate to the Expedite Base root directory. Double-click the 
ikmsetup.bat file.

Running this batch file moves the necessary .jar files from the GSKIT directory to the JRE 
directory. This step is required so that the IKEYMAN tool used for certificate creation will 
work.

Installation of Expedite Base for Windows is now complete.

Setting up the AT&T Net Client 
If you want to connect to the AT&T Global Network using TCP/IP dial, follow the instructions 
provided by the AT&T Net Client to complete the setup. 

1. In the AT&T Global Network Client program group, click the AT&T Global Network 
Client icon.

The Net Client main window opens

2. Click Setup.

3. Select the Create a new profile for an existing user ID, and then click Next.

 The Create New Profile window opens, 

4. Type a name for the new profile.

NOTE: Remember this Login Profile name. This name must be specified in the 
DIALPROFILE parameter under the TCPCOMM command in basein.pro file. See Chapter 
16, “Using TCP/IP communications,’’ for more information about setting up
TCP/IP communication for Expedite Base for Windows.

5. Make sure that Use default setting is selected, and then click Next.

6. On the next screen, type your Information Network user ID and password, and then click 
Finish.
12



Chapter 2. Installing Expedite Base for Windows

Running the installation program
The new ID is created. The Net Client main window opens

7. Click Setup.

8. Select Change phone numbers or other connection settings, and then click Next.

The Network Connection window opens, 

9. Select Dial using my computer’s modem, and then click Next.

The Modem window opens.

10. In the modem list, select the modem that you will use, and then click Next.

The Location window opens. 

11. Enter the Country, Area code, Exchange, and Dial prefix (if applicable),and then click 
Next.

The Network Access Number window opens.

12. In the drop down list next to the Region checkbox, select your region.

All numbers available in your region display in Phone number list.

13. Select the phone number to which you want to connect, and then click Next.

The Connection Summary window opens.

14. Verify that your entries are correct, and click Finish.

The Net CLient main window opens, 

15. Make sure that Save password is checked, and then click Connect.  

NOTE: You must save your password in the Net Client for Expedite Base for Windows to 
successfully connect to the network. The Net Client saves your password only after you have 
successfully connected and logged on to the network.

This process is complete.
13



Expedite Base for Windows Programming Guide

Understanding Expedite Base for Windows files
Running Expedite Base for Windows 
Once the installation procedure is complete, a new folder is created containing the icons required 
to run Expedite Base for Windows and the Net Client setup. 

To load and run Expedite Base for Windows, do the following:

1. From the Start menu, select Programs.

2. Select Expedite Base for Windows.

3. Select the Expedite Base for Windows icon. 

Expedite Base for Windows loads, and the logo window displays.

Manually dialing a session
With asynchronous communications, when you manually dial the connection you must tell 
Expedite Base for Windows when the modem connection has been established. to do this, click 
OK in the message box that is displayed after the session is started.

Understanding Expedite Base for Windows files 
The sections below list the files that are installed with Expedite Base for Windows. See 
Appendix C, “Reserved file names and user classes,’’ for reserved file names.

Files in the Expedite Base installation directory
The following files are installed in the main directory:

cnnct.scr
This file contains the dial commands for a modem that supports the AT command set. This 
script is designed for use in Australia, Canada, Latin America, and the United States, and 
may require modification for use in other countries. For more information, see Chapter 14, 
“Using the modem setup program and modem scripts.’’

discnnct.scr
This file contains the disconnect commands for a modem that supports the AT command set. 
This script is designed for use in Australia, Canada, Latin America, and the United States, 
and may require modification for use in other countries as described in Chapter 14, “Using 
the modem setup program and modem scripts.’’

display.scr
This file contains the status messages displayed by Expedite Base for Windows.

errormsg.cmp
This file contains the error messages written when Comm-Press programs encounter an 
error.

errormsg.fil
This file contains the error messages issued when Expedite Base for Windows encounters an 
error.

NOTE: These instructions assume that the Expedite Base for Windows icons 
were installed in the program group named Expedite Base for 
Windows.
14



Chapter 2. Installing Expedite Base for Windows

Understanding Expedite Base for Windows files
errortxt.fil
This file contains explanations of error messages in errormsg.fil and the appropriate user 
responses.

expsetup.exe
This is the executable module used to run the modem setup program. Open the Setup icon or 
type expsetup on the command line to run this program.

expsetup.hlp
This file contains the help information for the modem setup program.

hostname.all
This file contains addresses for all regions with which it is possible to communicate using 
Information Exchange Common Front End. It is needed for TCP/IP communication.

hostname.fil
This file contains the Information Exchange Common Front End name, address and port 
numbers, or both. You should not modify this file unless directed to do so by GXS, formerly 
IBM Global Services.

ibm3270.xlt
This file contains a translation table that Expedite Base for Windows uses to perform ASCII-
EBCDIC translation in the same manner as the IBM eNetwork Personal Communications 
for Windows program.

iebase.exe
This file is the executable module for Expedite Base for Windows in a direct-connection 
environment.

iebasec32.dll
This file calls iebasepr32.dll and iebasepo32.dll, as needed, for compression and decom-
pression.

iebasepo32.dll
This file checks the baseout.msg message response file for compressed files and verifies that 
the outmsgp32.dll file (required for data decompression) exists. See “Compressing and 
decompressing data” on page 263 for more information.

iebasepr32.dll
This file checks the value of the COMPRESS parameter and verifies that the inmsgp32.dll file 
(required for data compression) exists. See “Compressing and decompressing data” on page 
263 for more information.

ikmsetup.bat
This batch file must be run before SSL can be used to communicate (either with the AT&T 
Global Network or over the Internet). This file moves specific jar files fro the GSKit subdi-
rectory to the JRE subdirectory, so that the iKEYMAN certificate manager program will 
work. For detailed instructions, refer to the Expedite Base iKEYMAN setup document, 
available at URL: https://www.gxsolc.com/public/EDI/us/support/Products/expedite/
Exp_Base_iKEYMAN_setup.pdf.

NOTE: You can run the decompressed iebase file from another program. See 
“Setting your application to load Expedite Base for Windows” on page 
49 for more information.
15

https://www.gxsolc.com/public/EDI/us/support/Products/expedite/Exp_Base_iKEYMAN_setup.pdf
https://www.gxsolc.com/public/EDI/us/support/Products/expedite/Exp_Base_iKEYMAN_setup.pdf
https://www.gxsolc.com/public/EDI/us/support/Products/expedite/Exp_Base_iKEYMAN_setup.pdf


Expedite Base for Windows Programming Guide

Understanding Expedite Base for Windows files
license.txt
This file contains the IBM International Program License Agreement.

modems.lst
This file contains modem profile information used by the modem setup program.

mscomm.vbx
This file contains a custom control used by the modem setup program. It is installed in the 
Windows system directory.

noxlate.xlt
This file contains a translation table you can use to send and receive data without EBCDIC-
ASCII translation.

qualtbl.tbl
This file contains a sample EDI qualifier table. It specifies the translation tables or 
centralized alias tables that are used to resolve EDI destinations. It is not required for 
Expedite Base for Windows execution.

read.me
This file contains information made available after the publication of this book. You should 
read the contents of this file before using Expedite Base for Windows.

uninst.isu
This file is an InstallShield file used for uninstalling Expedite Base for Windows.

If the AT&T Net Client is not already installed on the machine, then Expedite Base for Windows 
allows the AT&T Net Client installation to place the files in the default directory for the Net 
Client.

Other important files
basefini

When Expedite Base is unloaded, it creates a file called BASEFINI. This file is useful to 
programmers who are writing Windows applications to detect termination of Expedite Base 
for Windows.

vbrun300.dll
This file contains the DLL required by both setup.exe and setup1.exe. It is installed in the 
Windows system directory.

Files in the samples directory 
The following files are installed in the samples directory:

auditfmt.c
This is a sample in C programming language you can use to format level 1, 2, or 3 audit 
records received from Information Exchange. It is not required for Expedite Base for 
Windows execution.

auditfmt.exe
This is a sample program you can use to format level 1, 2, or 3 audit records from 
Information Exchange. It is not required for Expedite Base for Windows execution. The 
sample C-language code for this program is included in auditfmt.c. The format looks similar 
to the format of baseout.msg.
16



Chapter 2. Installing Expedite Base for Windows

Understanding Expedite Base for Windows files
basemsg.in
This is a sample message command file you can use to run a sample Information Exchange 
session. It is not required for Expedite Base for Windows execution.

basepro.in
This is a sample profile command file you can use to run a sample Information Exchange 
session. It is not required for Expedite Base for Windows execution.

ecnnct.scr
This file contains a sample connect script for use in Austria, Belgium, Finland, France, 
Germany, Israel, Italy, Netherlands, and Sweden.

edcnnct.scr
This file contains a sample disconnect script for use in Austria, Belgium, Finland, France, 
Germany, Israel, Italy, Netherlands, and Sweden.

expsampl.c
This file contains a sample in C programming language for interapplication messaging.

expsampl.exe
This file is a sample program for interapplication messaging.

expsampl.mak
This is a makefile for Microsoft Visual C++ 6.0.

expwin.h
This file provides the #defines for communicating with Expedite Base for Windows.

makexlt.c
This file contains a sample in C programming language that can be used to build a trans-
lation table. It is not required for Expedite Base for Windows execution.

ps.bas
This is a sample BASIC program you can use to encrypt and decrypt passwords. It is not 
required for Expedite Base for Windows execution.

psc.c
This is a sample program in C programming language that you can use to encrypt and 
decrypt passwords. It is not required for Expedite Base for Windows execution.

qualtbl.tbl
This file contains a sample EDI qualifier table. It specifies the translation tables or 
centralized alias tables that are used to resolve EDI destinations. It is not required for 
Expedite Base for Windows execution.

report.c
This is a sample program in C programming language you can use to parse the contents of 
the message response file and create a summary of the session. It is not required for Expedite 
Base for Windows execution.

samptest.fil
This file contains sample data for a sample Information Exchange session. It is not required 
for Expedite Base for Windows execution.

scnnct.scr
This file contains a sample connect script for use in Switzerland and Slovenia.
17



Expedite Base for Windows Programming Guide

Understanding Expedite Base for Windows files
sdcnnct.scr
This file contains a sample disconnect script for use in Switzerland and Slovenia.

sslsamp.pro
This is a sample profile command for using TCP/IP communication with Information 
Exchange either through AT&T Global Network or the Internet. It is located in the samples 
subdirectory of the directory where you installed Expedite Base for Windows.

sysmsfmt.c
This is a sample program in C programming language that you can use to format system 
error messages (or acknowledgments) from Information Exchange. It is not required for 
Expedite Base for Windows execution. The format looks similar to the format of 
baseout.msg.

sysmsfmt.exe
This is a sample program that you can use to format system error messages (or acknowledg-
ments) from Information Exchange. It is not required for Expedite Base for Windows 
execution. The format looks similar to the format of baseout.msg. The sample C-language 
code for this program is included in the sysmsfmt.c file.

tcpdsamp.pro
This is a sample profile command for TCP/IP dial communication with Information 
Exchange. It is located in the samples subdirectory of the directory where you installed 
Expedite Base for Windows.

tcplsamp.pro
This is a sample profile command for TCP/IP leased-line communication with Information 
Exchange. It is located in the samples subdirectory of the directory where you installed 
Expedite Base for Windows.

tucnnct.scr
This file contains a sample connect script for use by traveling users.

ucnnct.scr
This file contains a sample connect script for use in Denmark, Norway, South Africa, Spain, 
and the United Kingdom.

udcnnct.scr
This file contains a sample disconnect script for use in Denmark, Norway, South Africa, 
Spain, and the United Kingdom.

NOTE: Additional files may exist on your program diskette. See the 
readme file for more information. A Visual Basic sample is 
included in the samples directory. It uses an ActiveX control, 
which is also included, to perform interapplication messaging 
with Expedite Base for Windows. The sample is located in the 
<Application Path>\samples\vb subdirectory. The ActiveX 
control is located in the <Application 
Parth>\samples\vb\activex subdirectory. See the readme file 
in the vb subdirectory for complete information on the Visual 
basic sample files, and how to build both the Visual Basic 
executable and the ActiveX control.
18



Chapter 2. Installing Expedite Base for Windows

Understanding Expedite Base for Windows files
Files in the samples\vb directory 
The following files are installed in the samples\vb directory:

VBSample.vbp
A Visual Basic project file.

VBSample.vbw
A Visual Basic workspace file.

VBSample.exe
A sample program that demonstrates interapplication messaging with Expedite Base.

Test.frm
A Visual Basic form containing an ActiveX control.

readme.txt
This file contains information on building vbsample.exe and the ActiveX control. 

msvbvm60.dll
The file needed to run the Visual Basic sample executable (VBSample.exe).

Files in the samples\vb\activex directory 
The following files are installed in the samples\vb\activex directory:

ExpActiveX.dsp
A Microsoft Visual C++ 6.0 project file.

ExpActiveX.dsw
A Microsoft Visual C++ 6.0 workspace file.

ExpActiveX.ocx
An ActiveX control that implements interapplication messaging with Expedite Base.

ExpActiveX.ico
An icon file for the ActiveX control.

ExpActiveX.h
The main include file for the ActiveX Control DLL. It includes other project-specific 
includes such as resource.h.

ExpActiveX.cpp
The main source file that contains code for DLL initialization, termination, and other 
bookkeeping.

ExpActiveX.rc
This file lists the Microsoft Windows resources that the project uses. This file can be directly 
edited with the Visual C++ resource editor.

ExpActiveX.def
This file contains information about the ActiveX Control DLL that must be provided to run 
with Microsoft Windows.

ExpActiveX.clw
This file contains information used by ClassWizard to edit existing classes or add new 
classes. ClassWizard also uses this file to store information needed to generate and edit 
message maps and dialog data maps, and to generate prototype member functions.
19



Expedite Base for Windows Programming Guide

Understanding Expedite Base for Windows files
ExpActiveX.odl
This file contains the Object Description Language source code for the type library of your 
control.

ExpActiveXCtl.h
This file contains the declaration of the CExpActiveXCtrl C++ class. Source code specific to 
Expedite Base for Windows is located here.

ExpActiveXCtl.cpp
This file contains the implementation of the CExpActiveXCtrl C++ class. Source code 
specific to Expedite Base for Windows is located here.

ExpActiveXPpg.h
This file contains the declaration of the CExpActiveXPropPage C++ class.

ExpActiveXPpg.cpp
This file contains the implementation of the CExpActiveXPropPage C++ class.

ExpActiveXCtl.bmp
This file contains a bitmap that a container will use to represent the CExpActiveXCtrl 
control when it appears on a tool palette. This bitmap is included by the main resource file:
ExpActiveX.rc.

stdafx.h, stdafx.cpp
This file is used to build a precompiled header (PCH) file named stdafx.pch and a precom-
piled types (PCT) file named stdafx.obj. resource.h. This is the standard header file and 
defines new resource IDs. The Visual C++ resource editor reads and updates this file.

ReadMe.txt
A readme file generated by Microsoft Visual C++ 6.0. It contains information on all the files 
used to build the ActiveX control.

Trace.h
This file contains declarations for the trace functions.

Trace.cpp
This file contains implementations for the trace functions.

regsvr32.exe
This file is used to register the ActiveX control.

mfc42.dll
This file is used to register the ActiveX control. 

Files in the windows\system directory 
The following file is installed in the windows\system directory:

oleaut32.dll.
This file is needed to run the Visual Basic sample executable (VBSample.exe).
20



Chapter 2. Installing Expedite Base for Windows

Understanding the Expedite Base for Windows configuration commands in the WIN.INI
Understanding the Expedite Base for Windows configuration 
commands in the WIN.INI

The Expedite Base for Windows configuration commands are contained in the WIN.INI file. 
This file is usually located in the Expedite Base for Windows directory where WIN.COM is 
stored. The WIN.INI file is divided into sections where each program defines its own section. 
Section names are defined within square brackets. The section name for Expedite Base for 
Windows is called Expedite Base.

The format of the Expedite Base section is:

[Expedite Base]
AutoMode=Y/N
MainWindow=Show/Hide
WindowSize=X,Y,sizeX,sizeY
DialDelay=seconds
FileNameFormat=0

ExpeditePath
Still a valid entry in the WIN.INI file, but Expedite Base for Windows no longer uses it in 
any way.

AutoMode 
Specifies whether an immediate start of a communications session is required when 
Expedite Base for Windows is loaded. It is possible for Expedite Base for Windows either to 
be in an idle state or to immediately start a communication session when it is loaded. The 
default is N.

The format for the AUTOMODE command is AutoMode=Y/N.

MainWindow 
Specifies whether the Expedite Base for Windows main window or icon is visible on 
loading. The default is Show. For more information about the MAINWINDOW command, see 
“Displaying the main window” on page 22.

WindowSize
Specifies the location and size of the main window. Expedite Base for Windows stores this 
parameter when you close the main window. Expedite Base for Windows does not store this 
parameter if you close the main window while Expedite Base for Windows is running 
minimized. If you set these values yourself, be sure to specify reasonable values for a 
location on the screen. Expedite Base for Windows creates a window at the nearest size to 
your specified values, and uses a font suitable to this size.

DialDelay
For TCP/IP communications, specifies the number of seconds that Expedite Base for 
Windows waits after a unsucessful dial attempt before dialing again. Valid values are 2 to 9. 
The default is 3.

NOTE: If you do not wish to specify a value for a command, you can 
either omit the line or leave the command value blank. The 
default is used.

Y Expedite Base for Windows starts immediately when it is loaded. The program is also 
automatically unloaded upon the completion of a session.

N Expedite Base for Windows remains idle when it is loaded. This is the default.
21



Expedite Base for Windows Programming Guide

Setting the program screen display
The following example shows how the Expedite Base section appears with the defaults:

[Expedite Base]
AutoMode=N
MainWindow=Show
WindowSize=44,44,692,540
DialDelay=3

Setting the program screen display 
The following sections describe how the program screen display functions are implemented in 
Expedite Base for Windows.

Displaying the main window 
The main window of any Expedite Base for Windows program is displayed in one of the 
following ways:

■ Minimized (as an icon) - Adjust through the iebase.exe shortcut properties.
■ Window (resizeable window) - Adjust through the iebase.exe shortcut properties.
■ Maximized (as a full-screen window) - Adjust through the iebase.exe shortcut properties.
■ Hidden (not displayed) - Set in MAINWINDOW command in WIN.INI.  (See below.)

If the MAINWINDOW command in the Expedite Base section of the WIN.INI file is set to Show, 
you can use Expedite Base for Windows shortcut properties to manually specify whether the 
visible window is an icon or a window. You can also specify this through your application 
program by using an interapplication message (IEBASE_COMMAND). See “Setting your appli-
cation to control Expedite Base for Windows functions” on page 49 for more information.

When Expedite Base for Windows is installed, the MAINWINDOW command default value in the 
WIN.INI is Show, but it can be changed at any time. If you change the command when Expedite 
Base for Windows is running, you will not notice the change until Expedite Base for Windows is 
reloaded.

Running Expedite Base for Windows in hidden mode
This setting is intended for users who want to control how Expedite Base for Windows executes 
from an application program. You can set this using one of the following methods: 

■ Method 1: Setting the mode in the WIN.INI file.
Set the MAINWINDOW command to Hide in the WIN.INI file. You must ensure that the appli-
cation program is available to unload Expedite Base for Windows when required, as it will 
not appear on the Task List if command is set to Hide.

■ Method 2: Setting the mode through the application program.
You can specify an IEBASE_COMMAND using the HIDE value in your application program. 
You can display the window while Expedite Base for Windows is running by sending an 
IEBASE_COMMAND message that sets the program to an icon, a default, or a maximized 
window.

NOTE: If you specify an invalid value for the MAINWINDOW 
command, the default value is used.
22



Chapter 2. Installing Expedite Base for Windows

Setting the program screen display
Understanding Expedite Base for Windows functions accessed from the menu bar 
The Expedite Base for Windows menu bar is a standard pull-down menu that contains a list of 
selectable functions. The following Expedite Base for Windows functions can be requested from 
the menu bar:

You can use either a mouse or a keyboard to select items from the menu bar. 

To use the keyboard option, press the ALT key and the letter underscored for the desired menu 
bar function at the same time. For example, press ALT plus the letter F to open the File menu bar 
item. Use the cursor keys to scroll up or down the menu list to highlight the desired item. Press 
Enter to select the desired menu option.

Select this from the 
File menu:

To do this:

Start Start the Expedite Base for Windows program.

Stop Stop the Expedite Base for Windows program.

Redial Redial the telephone number.

Exit Leave the program.

Select this from the 
Help menu:

To do this:

About Display version and release information about Expedite Base for 
Windows.
23



Expedite Base for Windows Programming Guide

Setting the program screen display
24



© Copyright GXS, Inc. 1998, 2005
Chapter 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Getting a quick start 

One way to understand how Expedite Base for Windows works is to run a session with Infor-
mation Exchange. This chapter discusses how to use sample files to run a sample session using 
asynchronous communication. 

Expedite Base for Windows came with a set of sample files. To work with the sample files, copy 
them from the samples subdirectory, under the directory where you installed Expedite Base for 
Windows, to your own directory.

You will need these three sample files for use with this quick start chapter:

■ basepro.in (profile command file)
■ basemsg.in (message command file)
■ samptest.fil (sample data file)

Rename the sample profile command file and message command file to the file names that 
Expedite Base for Windows uses. If you have already created a profile command file (basein.pro) 
or message command file (basein.msg), rename them before executing the next command so that 
you do not lose any data when you rename the sample files.

To rename the sample files, type these commands:

1. rename basepro.in basein.pro

2. rename basemsg.in basein.msg

The rest of this chapter deals with the sample profiles discussed above. There are also sample 
profile files for TCP/IP dial communication (tcpdsamp.pro) and TCP/IP leased-line communi-
cation (tcplsamp.pro).

NOTE: The sample file names are different from the Expedite Base for 
Windows file names so that you will not overwrite any files.

NOTE: For more information on TCP/IP communication, see Chapter 16, 
“Using TCP/IP communications.’’
25



Expedite Base for Windows Programming Guide

Modifying the sample profile command file
Modifying the sample profile command file 
To run a session with Information Exchange, Expedite Base for Windows needs information 
about the user and the method of communication. Expedite Base for Windows gets this infor-
mation from the profile command file (basein.pro).

In the renamed sample file basein.pro, the terms in uppercase are the commands and parameters, 
and the terms in lowercase are the values that pertain to you. Using a text editor, replace the 
following values in the sample file with your accounts, user IDs, passwords, and telephone infor-
mation.

Expedite Base for Windows uses this information to identify you to the network and Information 
Exchange and to specify the telephone number the program dials to establish a session with 
Information Exchange.

The remaining parameters in the sample basein.pro contain default values. These parameters and 
values illustrate complete commands. You do not have to specify a parameter if you choose to 
use its default value.

NOTE: When you order Expedite Base for Windows, you should receive your 
network and Information Exchange accounts, user IDs, passwords, and a 
telephone number you use to dial the network for asynchronous communication. 
If you do not have this information, contact your marketing representative.

Replace this With this information:

inacct Your network account ID

inuser01 Your network user ID

inpass Your network password

ieacct Your Information Exchange account

ieuser01 Your Information Exchange user ID

iepass Your Information Exchange password

phone number Your local telephone number, toll-free number, or fee number for the 
network

NOTE: If your telephone is on a PBX that requires an escape sequence to 
connect to an outside line, use the ESCAPE parameter on the DIAL command in 
basein.pro. For example, specify ESCAPE(9,) if you must dial a 9 before placing 
an outside telephone call.

NOTE: The default value for the COMMTYPE parameter on the TRANSMIT 
command is a, which indicates the communication type is asynchronous through 
a network gateway. For information about other methods of communication, see 
“TRANSMIT command” on page 165.
26



Chapter 3. Getting a quick start

Modifying the sample message command file
Modifying the sample message command file 
During an Information Exchange session, Expedite Base for Windows processes the commands 
you enter in the message command file (basein.msg). The sample file basein.msg contains the 
following information:

SEND FILEID(SAMPTEST.FIL) ACCOUNT(ieacct) USERID(ieuser01) CLASS(TEST1);
RECEIVE FILEID(SAMPTEST.NEW) ACCOUNT(ieacct) USERID(ieuser01) CLASS(TEST1);

Using a text editor, replace the values ieacct and ieuser01 with your Information Exchange 
account and user ID.

The SEND command in this file tells Expedite Base for Windows to send the file samptest.fil to 
your mailbox with a user class of test1.

The RECEIVE command tells Expedite Base for Windows to receive any files that your account 
and user ID sent with a user class of test1. This is, of course, the file that you just sent to your 
own mailbox. When Expedite Base for Windows receives this file, it creates a new file, 
samptest.new, on your workstation and places the received data in this file.

Running a sample session 
To run an Information Exchange session, follow these steps:

1. Attach your modem to the workstation and turn it on. If your modem has not been set up, 
follow the procedures described in Chapter 14, “Using the modem setup program and 
modem scripts.’’

2. At the Expedite Base for Windows command prompt, type the command iebase and press 
Enter. You must be in the directory where you installed Expedite Base for Windows.

Viewing the display 
When you run Expedite Base for Windows, the program displays status boxes that provide the 
following information about the session’s progress.

NOTE: If you wish to use SENDEDI and RECEIVEEDI commands in basein.msg, 
see Chapter 7, “Sending and receiving EDI data.’’

This message: Means this:

Dialing the Network Expedite Base for Windows is trying to connect with the network.

Connecting to the 
Network

Expedite Base for Windows is trying to connect with the network 
via TCP/IP communications only.

Successful xxxx 
connection

Expedite Base for Windows established a successful connection, 
where xxxx is the data rate of the connection for asynchronous 
communication. If you are using TCP/IP, then xxxx is replaced by 
TCP/IP. The status box shows the Customer Care Help Desk 
telephone number and your terminal ID.

Successful Network 
logon

Expedite Base for Windows logged on to the network Service 
Manager.
27



Expedite Base for Windows Programming Guide

Running a sample session
Verifying the session results 
After the session, verify the following new files in the directory where you installed Expedite 
Base for Windows.

baseout.pro
Contains the processing results of the profile command file (basein.pro).

iebase.pro
Maintains profile information for Expedite Base for Windows internal processing.

baseout.msg
Contains the processing results of the message command file (basein.msg).

samptest.new
Contains the data Expedite Base for Windows received from Information Exchange.

baseout.pro
Use your editor to view baseout.pro. This file shows the profile commands in basein.pro along 
with their associated return codes. The following is a subset of the information you should see in 
your baseout.pro.

IDENTIFY INACCOUNT(inacct) INUSERID(inuser01) INPASSWORD(inpass)
IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass);
RETURN(00000);
DIAL PHONE1(phone#);
RETURN(00000);
PROFILERC(00000);

Each command should have processed with a 00000 return code. The PROFILERC record also 
processed with a 00000 return code, which indicates all profile commands completed success-
fully.

Started session with 
Info Exch

Expedite Base for Windows has started its session with Infor-
mation Exchange. A second status box appears within the first 
box. This box displays information about the files you send to and 
receive from Information Exchange. In this sample session, the 
status box shows 1 file sent and 1 file received.

Ending Info Exch 
session

Expedite Base for Windows has completed the session with Infor-
mation Exchange.

Disconnecting Expedite Base for Windows is disconnecting from the network.

NOTE: If you do not get these results or if you do not get a 00000 return code, 
then either copy, edit, and run the sample files again, or see Appendix A, 
“Expedite Base for Windows error codes and messages.’’

This message: Means this:
28



Chapter 3. Getting a quick start

Running a sample session
iebase.pro 
When Expedite Base for Windows processes basein.pro, it creates the file iebase.pro. Because 
this is an internal file Expedite Base for Windows uses, you do not need to review it. Note, 
however, that Expedite Base for Windows creates this file and updates it when you make changes 
to basein.pro.

baseout.msg 
Use your editor to view baseout.msg. This file shows the message commands in basein.msg 
along with their associated return codes. The following example shows the information you 
might see in your baseout.msg file.

AUTOSTART SESSIONKEY(xxxxxxxx);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(xxxxxxxx) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND FILEID(SAMPTEST.FIL) ACCOUNT(ieacct) USERID(ieuser01) CLASS(TEST1);
SENT UNIQUEID(xxxxxxxx) LENGTH(xx);
RETURN(00000);

RECEIVE FILEID(SAMPTEST.NEW) ACCOUNT(ieacct) USERID(ieuser01) CLASS(TEST1);
RECEIVED ACCOUNT(ieacct) USERID(ieuser01) CLASS(TEST1) CHARGE(1) LENGTH(xxx)
FILEID(SAMPTEST.NEW) MSGDATE(xxxxx) MSGDATELONG(xxxxxxxx) MSGTIME(xxxxxx)
MSGSEQO(xxxxxx) SESSIONKEY(xxxxxxxx) DELIMITED(x) SYSNAME(xxxxxxxx)
SYSLEVEL(xxxx) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SAMPTEST.FIL) SENDERLOC(EXPBASE) FILEDATE(xxxxxx)
FILEDATELONG(xxxxxxxx) FILETIME(xxxxxx) RECFM(????)
RECLEN(00000) RECDLM(C) UNIQUEID(xxxxxxxx) SYSTYPE(12)
SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

In this file, the x values are determined during transmission. The following is an explanation of 
the commands and responses in baseout.msg.

AUTOSTART
Indicates that Expedite Base for Windows started the Information Exchange session 
automatically. This record has a 00000 return code.

STARTED
Provides a response to the AUTOSTART command. It indicates the SESSIONKEY, Information 
Exchange version and release, the return code for last session, and the response code for the 
AUTOSTART command.

SEND
Is an echo of the SEND command in basein.msg.

SENT
Provides a response to the SEND command. It indicates that Expedite Base for Windows sent 
the file and assigned a unique ID. It also shows the length of the file and has a 00000 return 
code.

RECEIVE
Is an echo of the RECEIVE command in basein.msg.
29



Expedite Base for Windows Programming Guide

Running a sample session
RECEIVED
Provides a response to the RECEIVE command. It indicates that Expedite Base for Windows 
received the file.

AUTOEND
Indicates that Expedite Base for Windows ended the Information Exchange session automat-
ically. This record has a 00000 return code.

SESSIONEND
Indicates the overall processing results of the message commands. This record has a 00000 
return code.

samptest.new
This file contains the data Expedite Base for Windows received from Information Exchange. It is 
identical to the file samptest.fil you sent to Information Exchange.
30



© Copyright GXS, Inc. 1998, 2005
Chapter 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Understanding Expedite Base for Windows

Expedite Base for Windows uses the following files to perform its functions:

■ Profile command file (basein.pro)

■ Profile response file (baseout.pro)

■ Message command file (basein.msg)

■ Message response file (baseout.msg)

■ Temporary response file (tempout.msg)

You use Expedite Base for Windows by placing requests in command files, running the iebase 
program, and then examining the appropriate response files to see if the requests completed 
successfully. For a detailed description of all profile commands and their parameters, see Chapter 
8, “Using Expedite Base for Windows profile commands.’’ For a detailed description of all 
message commands and their parameters, see Chapter 9, “Using Expedite Base for Windows 
message commands.’’

This chapter describes the Expedite Base for Windows command syntax and discusses the 
command and response files. It also discusses user and design considerations for your application 
interface.

Figure 1 on page 32 shows how Expedite Base for Windows uses the command and response 
files to move data between Information Exchange and your application.
31



Expedite Base for Windows Programming Guide

Understanding command syntax
Figure 1. Application design diagram

Understanding command syntax 
An example of Expedite Base for Windows command syntax is shown below:

#Comment or description
command parameter(value) parameter(value) ...parameter(value);

# Defines or delimits comments. Type any information after #. The program 
ignores the characters after # until it encounters a new line. You do not have to 
end comments with #. Expedite Base for Windows considers the end of the line 
in which the comment exists to be the end of that comment. If you want a 
comment to continue, begin a new line with #.

If you place a command after the comment on the same line, Expedite Base for 
Windows ignores that command. To ensure that your command is processed, 
you should either place the command on a new line or place the command 
before the comment.

Some file names and description statements contain #. If you include a # in a 
parameter value, Expedite Base for Windows knows from the context that the # 
is part of a command and does not ignore the parameter value or the characters 
that follow.

The following example shows how to place a command and a comment on the 
same line. In this case, Expedite Base for Windows ignores all the information 
after #. The program begins processing again at the ACCOUNT parameter 
because this parameter is on a new line that does not begin with #.

  send fileid(sample.fil) #this is a new file
    account(acct2) userid(user2) class(class1);

command Identifies the Expedite Base for Windows command.

parameter Identifies a parameter associated with the command preceding it.

value Defines the value associated with the parameter.

... Indicates in the example above that you can specify as many parameters as 
necessary. This is not part of the syntax.

; Ends the command.

User Application

Expedite Base

Information Exchange

basein.pro basein.msg baseout.pro baseout.msg tempout.msg
32



Chapter 4. Understanding Expedite Base for Windows

Understanding the profile command file
You can type Expedite Base for Windows commands and parameters in uppercase or lowercase 
letters. The commands and parameters can span several lines in a command file. However, the 
following limitations apply:

■ You must type the entire command name (for example, IDENTIFY) on a single input line.

■ You must type the entire parameter name (for example, IEACCOUNT) on a single input line.

■ A left parenthesis must immediately follow each parameter without a space between the 
parameter name and associated values. For example, type ieaccount(acct) rather than 
ieaccount (acct).

■ You must end each command with a semicolon.

Understanding the profile command file 
The profile command file (basein.pro) is a free-format command file that controls communi-
cation between Expedite Base for Windows and the network. You must not change the name of 
basein.pro; it is the primary Expedite Base for Windows file. Place basein.pro in the current 
directory or in a directory you specify with the PATH command line option. For a detailed 
description of all profile commands and their parameters, see Chapter 8, “Using Expedite Base 
for Windows profile commands.’’

For most of the parameters in basein.pro, you can use the default values. However, there are 
some parameters for which you must provide values. The following list describes these required 
parameters:

■ INACCOUNT, INUSERID, and INPASSWORD parameters on the IDENTIFY command

These parameters are only required to log on to the AT&T Global Network for asynchronous 
communication. Connection to the AT&T Global Network for TCP/IP dial communication 
is established by the AT&T Net Client. Connection to the Internet or to the AT&T Global 
Network for TCP/IP leased line communication has to be established before Expedite Base 
for Windows is started. The format is alphanumeric.

For information on specifying Information Exchange passwords, see Information Exchange 
Messages and Formats.

■ IEACCOUNT, IEUSERID, and IEPASSWORD parameters on the IDENTIFY command

These parameters are used to start a session with Information Exchange. Enter your Infor-
mation Exchange account, user ID, and password. The format is alphanumeric.

For information on specifying Information Exchange passwords, see Information Exchange 
Messages and Formats.

■ PHONEn parameter on the DIAL command 

This parameter  is only required for asynchronous communication with the AT&T Global 
Network. The PHONE# parameter is not required if COMMTYPE(T) is specified. This 
parameter is used to access the network. Enter at least one phone number. If you have more 
than one number, enter the numbers in the order you want Expedite Base for Windows to 
dial them.

The following list contains some of the other profile parameters you may want to include in 
basein.pro. These are not required parameters.
33



Expedite Base for Windows Programming Guide

Understanding the profile command file
■ NINPASSWORD parameter on the IDENTIFY command

This parameter is used to change your network password. After the password is changed, 
copy the value in NINPASSWORD to the INPASSWORD parameter and remove the 
NINPASSWORD parameter from basein.pro. Expedite Base for Windows stores this password 
in an encrypted format in an internal file.

■ NIEPASSWORD parameter on the IDENTIFY command

This parameter is used to change your Information Exchange password. After the password 
is changed, copy the value in NIEPASSWORD to the IEPASSWORD parameter and remove the 
NIEPASSWORD parameter from basein.pro. Expedite Base for Windows stores this password 
in an encrypted format in an internal file.

■ ESCAPE parameter on the DIAL command

This parameter is used to obtain an outside line when you have an auto-dial modem. 
Expedite Base for Windows appends it to the front of all telephone numbers so the modem 
can dial the correct sequence to obtain an outside line.

■ BAUDRATEn and DIALCOUNTn parameters on the DIAL command

These parameters are used with the PHONEn parameter when you have more than one phone 
number. Enter at least one local number and one backup number. You can use up to five 
different sets of phone numbers, modem speeds (data rates), and dial counts.

■ COMMTYPE parameter on the TRANSMIT command

This parameter is used to specify your communication type: asynchronous communication 
or TCP/IP communication. The default value is a for asynchronous communication.

■ RECONNECT parameter on the TRANSMIT command

This parameter is used to specify how many times Expedite Base for Windows should 
automatically redial the network if it loses contact. The default value is 5.

■ COMMITDATA parameter on the TRANSMIT command

This parameter is used to specify the amount (bytes) of data you want Expedite Base for 
Windows to send Information Exchange between checkpoints (also known as commits). The 
default value is 141000. You should only use values lower than 141000 if poor telephone 
conditions are causing frequent disconnection with Information Exchange. Otherwise, low 
values in this parameter cause frequent checkpoints with Information Exchange and slow 
data transfer.

■ MSGSIZE

Specifies the size of the segment for sending data. Your trading partner can take checkpoints 
only for the message size you specify with this parameter. The default value is 47000 bytes 
for TCP/IP, and 37000 bytes for all other communication types.

■ CYCLE and WAIT parameters on the DIAL command

NOTE: MSGSIZE size must be less than or equal to COMMITDATA.
34



Chapter 4. Understanding Expedite Base for Windows

Understanding the profile command file
The CYCLE parameter is used to specify how many times Expedite Base for Windows cycles 
through the telephone number list if it cannot establish a connection in the first cycle. The 
WAIT parameter is used to specify how long Expedite Base for Windows pauses between 
cycles. For example, if the values are 4 for CYCLE (first cycle plus four additional cycles for 
a total of five) and 0030 for WAIT, Expedite Base for Windows attempts to connect to the 
network one cycle every 30 minutes for a total of five cycles. If Expedite Base for Windows 
cannot establish a connection, it issues an unsuccessful return code.

■ MODEM parameter on the TRACE command

This parameter is used to produce a trace to show why Expedite Base for Windows cannot 
establish a connection with Information Exchange. Expedite Base for Windows places the 
trace information in iebase.trc. This file shows command processing information from the 
modem control file and shows responses from the modem.

Other parameters of the TRACE command are CNNCT, IOFILE, LINK, MODEM, PROTOCOL, 
BASE, and DISPLAY. Expedite Base for Windows stores the trace information for parameters 
in iebase.trc.

■ OVERWRITE parameter on the SESSION command

This parameter is used to tell Expedite Base for Windows whether or not to overwrite 
existing files during the receive process. If this parameter value is n and an existing file and 
a received file have the same file name, Expedite Base for Windows does not overwrite the 
existing file. Instead, it appends the received file to the end of the existing file.

Expedite Base for Windows places the processing results of the profile commands in the profile 
response file (baseout.pro).

Reviewing examples of basein.pro
The following examples illustrate possible profile command files. The examples address 
asynchronous communication, TCP/IP communication, trace information, and delayed trans-
mission. In each example, the terms in uppercase are the commands and parameters; the terms in 
lowercase are the values that pertain to the user. An explanation of the commands, parameters, 
and values follows each example.

Example 1 
This is a simple profile for asynchronous communication that contains the IDENTIFY and DIAL 
commands. 

IDENTIFY INACCOUNT(inacct) INUSERID (inuser01) INPASSWORD(inpass) 
IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass);
DIAL PHONE1(555-1234);

NOTE: Although it is not necessary to set these traces on permanently, you 
should consider giving users access to all trace parameters to help them with 
problem determination. If users do not have access to these traces, it severely 
limits the ability of the Customer Care Help Desk to determine the cause of a 
problem.

NOTE: If you are going to switch between different communication types 
(asynchronous dial or TCP/IP), use separate profiles (basein.pro) for each type 
of communication. Make sure you erase iebase.pro before you switch profiles.
35



Expedite Base for Windows Programming Guide

Understanding the profile command file
The IDENTIFY command provides the information Expedite Base for Windows needs to log on to 
the network and Information Exchange. This information includes your network and Information 
Exchange accounts, user IDs, and passwords.

The DIAL command specifies the telephone number Expedite Base for Windows uses to connect 
to the network.

Example 2 
This is a more complex profile for asynchronous communication. 

IDENTIFY INACCOUNT(inacct) INUSERID (inuser01) INPASSWORD(inpass) 
IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass)
NIEPASSWORD(newpass);

DIAL PHONE1(555-1234) DIALCOUNT1(3) BAUDRATE1(57600)
PHONE2(1-800-555-4321) DIALCOUNT2(1) BAUDRATE2(19200)
PHONE3(1-800-555-4321) DIALCOUNT3(0) BAUDRATE3(2400)
PORT(2) CYCLE(2) WAIT(0030) ESCAPE(9,);

In addition to providing account, user ID, and password information, the IDENTIFY command also 
provides new password information. The NIEPASSWORD parameter tells Expedite Base for 
Windows to change the Information Exchange password. When Expedite Base for Windows 
starts a session, it changes the password specified in the IEPASSWORD parameter to the one 
specified in the NIEPASSWORD parameter. After the password is changed, you must change the 
password in the IEPASSWORD parameter to the new password and remove the NIEPASSWORD 
parameter.

The DIAL command specifies the telephone numbers and other telephone information Expedite 
Base for Windows uses to connect to the network. The DIALCOUNT1 parameter indicates that 
Expedite Base for Windows can dial the telephone number in PHONE1 up to three times if it 
cannot make a successful connection. The BAUDRATE1 parameter sets the communication at a 
data rate of 57600 bps, and the PORT parameter indicates the modem is using port 2.

If Expedite Base for Windows dials the first telephone number three times without a successful 
connection, it dials the telephone number in PHONE2. It dials this number only once at a data rate 
of 19200 bps. The PHONE3 parameter specifies a third telephone number, but Expedite Base for 
Windows cannot dial it because the DIALCOUNT3 is zero.

At this point, if Expedite Base for Windows does not establish a successful connection, it uses 
the CYCLE and WAIT parameters to attempt to connect to the network again. If you specified a 
value greater than 0 for CYCLE and WAIT, Expedite Base for Windows attempts to connect after 
the time specified in the WAIT parameter and continues making attempts for the number of times 
specified in the CYCLE parameter.

NOTE: The COMMTYPE parameter on the TRANSMIT command indicates the 
type of communication you are using. Because the default is asynchronous 
communication, you do not need to specify the TRANSMIT command in this 
profile. However, you could specify it as: 
                            TRANSMIT COMMTYPE(A);

NOTE: A CYCLE value of 2 results in a total of three cycles: the original and 
two additional cycles.
36



Chapter 4. Understanding Expedite Base for Windows

Understanding the profile command file
The ESCAPE parameter indicates that the telephone system requires Expedite Base for Windows 
to dial 9 before dialing an external telephone number. The single comma in this parameter value 
tells Expedite Base for Windows to wait one second after dialing 9 before it dials the external 
number.

Example 3
This is a profile used for standard TCP/IP communication.

IDENTIFY IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass);
TRANSMIT COMMTYPE(C) AUTOSTART(Y) AUTOEND(Y) RECONNECT(5) 
COMMITDATA(47000) MAXMSGS(10) RECOVERY(C);
TCPCOMM DIALPROFILE(dialprof) TIMEOUT(5) DIALCOUNT(5);

The IDENTIFY command provides the information Expedite Base for Windows needs to log on to 
the network and Information Exchange. This information includes your network and Information 
Exchange accounts, user IDs, and passwords.

The value C in the COMMTYPE parameter on the TRANSMIT command indicates communication 
by way of a TCP/IP connection.

The TCPCOMM command is used to specify parameters for the TCP/IP connection.

Example 4
This is a profile used for TCP/IP SSL communication over the Internet or an AT&T leased line.

IDENTIFY IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass);
KEYRINGFILE(acct_user.kdb) KEYRINGPASSWORD(password);

Example 5 
This is a profile that requests trace information and specifies delayed transmission.

IDENTIFY INACCOUNT(inacct) INUSERID(inuser01) INPASSWORD(inpass)
IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass);
DIAL PHONE1(555-1234);
TRACE MODEM(Y);
TRANSMIT DELAYTIME(020000);

The IDENTIFY command provides the information that Expedite Base for Windows needs to log 
on to the network and Information Exchange. This information includes your network and Infor-
mation Exchange accounts, user IDs, and passwords.

The DIAL command specifies the telephone number that Expedite Base for Windows uses to 
connect to the network.

The TRACE command provides trace information to assist with problem determination. The value 
Y in the MODEM parameter tells Expedite Base for Windows to include trace information for the 
modem communications in the trace file.

The DELAYTIME parameter on the TRANSMIT command tells Expedite Base for Windows to start a 
session with Information Exchange at 2:00 a.m.
37



Expedite Base for Windows Programming Guide

Understanding the profile response file
Understanding the profile response file 
When Expedite Base for Windows processes basein.pro, it echoes the profile commands, along 
with their associated return codes, to the profile response file (baseout.pro). The RETURN records 
in this file contain the return codes for each profile command. The PROFILERC record contains the 
return code for the processing results of the entire basein.pro file. For more information on 
profile response records, see “Working with profile response records” on page 169.

You can examine the RETURN record to see if a particular profile command ran correctly. 
However, if the PROFILERC record does not have a zero return code, Expedite Base for Windows 
did not save the changes requested in basein.pro. When this happens, correct any incorrect 
commands and reissue all of the commands in basein.pro.

Reviewing an example of baseout.pro 
The following is an example of a profile response file. An explanation of the response records 
follows the example.

IDENTIFY INACCOUNT(inacct) INUSERID(inuser01) INPASSWORD(inpass)
    IEACCOUNT(ieacct) IEUSERID(ieuser01) IEPASSWORD(iepass);

RETURN(00000);
DIAL PHONE1(555-1234) DIALCOUNT1(3)

    PHONE2(555-4321) DIALCOUNT2(2)
    PHONE3(555-5555) DIALCOUNT3(0)
    PORT(2) CYCLE(2) WAIT(0030) ESCAPE(9,);

RETURN(00000);
PROFILERC(00000);

The 00000 return codes in the RETURN records indicate that the commands completed success-
fully. The 00000 return code in the PROFILERC record indicates that all the profile commands 
completed successfully.

Understanding the message command file 
You must enter commands for Expedite Base for Windows in the message command file 
(basein.msg). You can enter commands to:

■ Start a session with Information Exchange
■ Define a distribution list
■ Define alias names and alias tables
■ Send e-mail
■ Send an unformatted text or binary file
■ Send an EDI-formatted file
■ Receive e-mail
■ Receive an unformatted text or binary file
■ Receive an EDI-formatted file
■ Request audit records be placed in your mailbox
■ Delete a specific file from a user’s mailbox
■ Work with libraries
■ End a session

Expedite Base for Windows places the processing results of these commands in the message 
response file (baseout.msg).
38



Chapter 4. Understanding Expedite Base for Windows

Understanding the message response file
Reviewing examples of basein.msg 
The following examples show message command files. In each example, the terms in uppercase 
are the commands and parameters; the terms in lowercase are the values that pertain to the user 
and the files. An explanation of the commands, parameters, and values follows each example.

Example 1
This example includes the commands for sending and receiving a file.

SEND FILEID(sample.snd) ACCOUNT(acct) USERID(user1) CLASS(test);
RECEIVE FILEID(sample.rcv) ACCOUNT(acct) USERID(user1) CLASS(test);

The message command file shows that you want to send one file and receive one file. The file 
you are sending is sample.snd. You are sending it to account acct and user ID user1. The user 
class is test.

The file you are receiving was sent from account acct and user ID user1 with a user class of test. 
You want to receive the file into sample.rcv.

Example 2
This example includes the commands for sending a file and receiving system error messages.

SEND FILEID(sample.snd) ACCOUNT(acct) USERID(user2);
RECEIVE FILEID(errors.fil) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

The message command file shows that you want to send one file and receive any system error 
messages. The file you are sending is sample.snd. 

You want to send it to account acct and user ID user1, but you accidentally specify the user ID as 
user2.

The user ID user2 is not a valid user ID, but the syntax of the SEND command is correct, so 
Expedite Base for Windows processes the command without error. However, when Information 
Exchange receives the file, it detects the error and sends a system error message to your mailbox.

Because you are receiving system error messages in the file errors.fil, you get the message that 
tells you Information Exchange could not deliver the file because user2 is not a valid user ID. If 
you had not been receiving error messages, you would assume Information Exchange sent the 
file to your trading partner. This is why it is important that you always attempt to receive system 
error messages when you send files. You may not receive the system error message in the same 
session, but in a later session when you request system messages.

Understanding the message response file 
When Expedite Base for Windows processes basein.msg, it echoes the message commands, 
along with response records and their associated return codes, to the message response file 
(baseout.msg). The RETURN records in this file contain the return codes for each message 
command. See “Processing the message response file” on page 42 for more information.

NOTE: To verify that a destination account and user ID exists on the 
Information Exchange system, use the VERIFY parameter on the SEND command. 
For more information, see “SEND command” on page 222. You may not receive 
the error message until the next session.
39



Expedite Base for Windows Programming Guide

Understanding the message response file
Your application interface should read and process the response file. If a session restart is 
necessary and commands have not completed, your application interface should make any 
necessary decisions or changes based on information in baseout.msg and the information in the 
temporary response file (tempout.msg). See “Processing the message response file” on page 42 
for more information.

Reviewing examples of baseout.msg 
The following examples show message response files. An explanation of the response records 
follows each example.

Example 1 
This example includes the response file for a SEND and RECEIVE command.

AUTOSTART SESSIONKEY(JFHTK8HJ);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(JFHTK8HJ) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND FILEID(SAMPLE.SND) ACCOUNT(ACCT) USERID(USER1) CLASS(TEST);
SENT UNIQUEID(54232365) LENGTH(5334);
RETURN(00000);

RECEIVE FILEID(SAMPLE.RCV) ACCOUNT(ACCT) USERID(USER1) CLASS(TEST);
RECEIVED ACCOUNT(ACCT) USERID(USER1) CLASS(TEST) CHARGE(1) LENGTH(5334)
FILEID(SAMPLE.RCV) MSGDATE(980603) MSGDATELONG(19980603) 
MSGTIME(100232)
MSGSEQO(234523) SESSIONKEY(JFHTK8HJ) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SAMPTEST.FIL) SENDERLOC(EXPBASE) FILEDATE(980601)
FILEDATELONG(19980601) FILETIME(120023) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(89337949) SYSTYPE(15) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates the 
session started successfully.

Before writing the SENT and RECEIVED records, Expedite Base for Windows echoes the SEND and 
RECEIVE commands from basein.msg.

The SENT record indicates that Expedite Base for Windows sent the file. It also provides infor-
mation about the unique ID that Expedite Base for Windows assigned the file and the length of 
the file. The 00000 return code in the RETURN record indicates the command completed success-
fully.

The RECEIVED record indicates that Expedite Base for Windows received the file and provides 
information about the file. The 00000 return code in the RETURN record indicates the command 
completed successfully.
40



Chapter 4. Understanding Expedite Base for Windows

Understanding the message response file
The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates the session ended 
successfully. The 00000 return code in the SESSIONEND record indicates that all the commands 
completed successfully.

Example 2 
This example shows the response file for a SEND and RECEIVE command. The data being received 
is a system error message.

AUTOSTART SESSIONKEY(JFHI3379);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(JFHI3379) IEVERSION(04)
IERELEASE(06);
RETURN(00000);

SEND FILEID(SAMPLE.SND) ACCOUNT(ACCT) USERID(USER2);
SENT UNIQUEID(97459230) LENGTH(4898);
RETURN(00000);

RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RECEIVED ACCOUNT(*SYSTEM*) USERID(*ERRMSG*) CHARGE(6) 
FILEID(ERRORS.FIL)
MSGDATE(980603) MSGDATELONG(19980603) MSGTIME(073614) MSGSEQO(001954)
SESSIONKEY(JFH13379) DELIMITED(N) SYSNAME(EB/WIN) SYSLEVEL(0450)
TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED) RECFM(????)
RECLEN(00000) RECDLM(N) UNIQUEID(12682030) SYSTYPE(12) SYSVER(0);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates the 
session started successfully.

The SENT record indicates that Expedite Base for Windows sent the file. It also provides infor-
mation about the unique ID that Expedite Base for Windows assigned the file and the length of 
the file. The 00000 return code in the RETURN record indicates the command completed success-
fully.

The RECEIVED record indicates that Expedite Base for Windows received a system error message 
in the file errors.fil and provides information about the file. The 00000 return code in the RETURN 
record indicates the command completed successfully.

The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates the session ended 
successfully. The 00000 return code in the SESSIONEND record indicates that all the commands 
completed successfully.

Even though SESSIONEND indicates all commands completed successfully, the message from 
Information Exchange in errors.fil tells you that the user ID user2 is not a valid user ID, which 
means Information Exchange could not deliver the file.
41



Expedite Base for Windows Programming Guide

Understanding the common data header
Understanding the common data header 
Most Information Exchange interfaces can use a common data header (CDH) to send and receive 
detailed information about the contents of a file. The CDH typically contains the following infor-
mation:

■ Type of file (text or binary)

■ Record delimiters used in the file; for example, carriage-return and line-feed (CRLF) 
characters or record lengths

■ Indication of whether or not the data is EDI-formatted

■ Original name of the file on the sending system

■ Free-format text description of the file

■ Other information describing the original file

When Expedite Base for Windows receives a file, it can use the information in the CDH to 
format the file. Expedite Base for Windows places the CDH information for received data in the 
response file in the RECEIVED record or the AVAILABLE record. For more information, see 
“RECEIVED record” on page 251 or “AVAILABLE record” on page 239.

You do not have to do anything to send or receive the CDH because Expedite Base for Windows 
does it automatically. For more detailed information on the use and format of the CDH, see 
Appendix B, “Common data header.’’

Processing the message response file 
The following sections contain information to help you ensure that Expedite Base for Windows 
processed the message command file and message commands completely and successfully. 
These sections also provide information to help you understand the SENT and RECEIVED records 
in the baseout.msg message response file.

Checking the session return code 
To ensure Expedite Base for Windows finished processing the message command file, check the 
return code in the SESSIONEND record. This is also the return code of the program.

If the return code indicates that Expedite Base for Windows did not finish processing the 
message command file (for example, the return code is not 00000 or 28xxx), correct the error and 
reinvoke Expedite Base for Windows. The SESSIONEND record often includes an error 
description. You can find detailed descriptions of errors in Appendix A, “Expedite Base for 
Windows error codes and messages.’’

Checking the command RETURN records 
Once Expedite Base for Windows finishes processing the message command file, you should 
examine the RETURN records in the message response file to see if commands completed 
successfully. If an error occurred, the message response file will also have error description 
records.
42



Chapter 4. Understanding Expedite Base for Windows

Using the temporary response file
Checking the SENT and RECEIVED records 
Expedite Base for Windows produces SENT records for every file sent to Information Exchange 
and RECEIVED records for every file received from Information Exchange. These records provide 
detailed information about files you sent and received.

A single RECEIVE or RECEIVEEDI command can often produce multiple RECEIVED records, 
indicating that multiple files were received with a single command. Also, a single SENDEDI 
command can produce several SENT records, indicating that several EDI envelopes were sent 
with a single command.

Using the temporary response file 
Expedite Base for Windows echoes commands and response records for commands processed 
since the last Information Exchange checkpoint to the temporary response file (tempout.msg). 
For more information on Information Exchange checkpoints, see Chapter 6, “Sending and 
receiving files,’’ and Chapter 7, “Sending and receiving EDI data.’’

If an Information Exchange session ends in error, processing information may be in tempout.msg 
as well as baseout.msg. Looking at tempout.msg can often help you to determine the cause of an 
error (for example, a syntax error). The tempout.msg file contains the RETURN record for most 
errors. It also can contain the command that caused the error.

The following example shows a command with a syntax error and the resulting tempout.msg file.

Syntax error:
In this example, the parameter userid was incorrectly typed user&!.

send fileid(test.fil) account(acct) user&!(user01) class(test);

tempout.msg 
AUTOSTART SESSIONKEY(P118KFN7);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(P118KFN7) IEVERSION(04)
IERELEASE(05);
RETURN(00000);
SEND FILEID(TEST.FIL) ACCOUNT(ACCT) USER&!(USER01);
RETURN(15030) ERRDESC(Invalid parameter found.);

NOTE: SENT and RECEIVED records can be present even if the RETURN record is 
not present. If the RETURN record is not present, the command is not complete. 
Whenever possible, correct the error that prevented Expedite Base for Windows 
from completing the command and reinvoke Expedite Base for Windows. For 
more information on response file records, see Chapter 8, “Using Expedite Base 
for Windows profile commands,’’ and Chapter 10, “Using Expedite Base for 
Windows message response records.’’
43



Expedite Base for Windows Programming Guide

Using the temporary response file
44



© Copyright GXS, Inc. 1998, 2005
Chapter 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Designing your interface 

Before you design an application interface to Expedite Base for Windows, you need to know who 
is going to use the interface and what activities the users expect the interface to perform. 

You also need to decide how the interface will run Expedite Base for Windows — attended or 
unattended.

Understanding the users
To help you determine who your users are and what they need, ask yourself these questions:

■ Are the users sophisticated Windows users capable of reacting to system problems?

■ Do the users expect a simplistic approach, such as sending and receiving files with the same 
file names?

■ Do the users want to set up the send and receive requests, or do they want the interface to 
create them?

When you answer these questions, you can then decide if your interface should run Expedite 
Base for Windows attended or unattended, or run it using a combination of both.

Attended operation 
With attended operation, the users can interact with Expedite Base for Windows if an Infor-
mation Exchange session does not complete successfully. Users should be able to restart and 
reset sessions, correct errors in the profile command file and message command file, and cancel 
sessions.

Unattended operation 
With unattended operation, the interface runs Expedite Base for Windows. It completes Infor-
mation Exchange sessions with little or no assistance from the users. Therefore, the interface 
must be capable of correcting error conditions.
45



Expedite Base for Windows Programming Guide

Understanding how your interface interacts with Expedite Base for Windows
Understanding how your interface interacts with Expedite Base for 
Windows

To design an interface to Expedite Base for Windows, you must understand the interaction 
between your interface and Expedite Base for Windows during an Information Exchange session. 
The following information briefly describes the activities your application interface performs and 
the activities Expedite Base for Windows performs.

■ Your application interface performs the following activities:

• Builds the profile command file
• Builds the message command file
• Calls the iebase program

■ Expedite Base for Windows performs these activities:

• Processes the profile command file and writes responses to the profile response file
• Establishes a connection to the network and logs on to the Service Manager
• Logs on to Information Exchange
• Processes the message command file and writes responses to the message response file
• Ends the Information Exchange session, logs off the network, and terminates the 

connection
• Writes the final return code to the message response file

When the Information Exchange session ends, your application interface performs the following 
activities:

■ Checks the final return code in the message response file

■ Processes the responses in the message response file

■ Provides a method for you to correct errors

■ Decides whether a session restart or reset is necessary when a session ends in error

Programming your application to control Expedite Base for Windows
The message-based control facility enables application programs to control Expedite Base for 
Windows. It also enables Expedite Base for Windows to send status information to a calling 
application program. Command messages are sent from the application program to Expedite 
Base for Windows. These messages are sent to handles, which are numbers that represent the 
different application programs running on Expedite Base for Windows. Every program has a 
handle that identifies its main window.

In order for an application program to start a message-based conversation with Expedite Base for 
Windows, it must ask Expedite Base for Windows for the handle (an identifier) of the program. It 
does this by giving Expedite Base for Windows the name of the program, such as Expedite Base, 
and Expedite Base for Windows returns the appropriate handle to the application program. The 
handle is what the application program uses to send messages to Expedite Base for Windows. 

It is your responsibility to ensure that your application program loads Expedite Base for 
Windows.

The first IEBASE_COMMAND message that your application must send is the IDENTIFY command. 
From this, Expedite Base for Windows knows that it is under the control of the application 
program and sends all its status messages to that handle.
46



Chapter 5. Designing your interface

Understanding Expedite Base for Windows programming considerations
Once the conversation has been initialized, event messages are sent from Expedite Base for 
Windows to the application program. The event messages sent from Expedite Base for Windows 
to the application program provide the event number and text from the display.scr file.

If Expedite Base for Windows is used interactively and there is no application program, it will 
not try to send messages. Expedite Base for Windows only sends messages if it was started by an 
application program sending it an IDENTIFY command message and the STATUS parameter in the 
input file is enabled.

It is not possible to change any of the commands stored in the basein.pro or basein.msg files by 
using interapplication messages. There is no overlap between the control available by using free-
format input files and the facilities offered by message-based control. For example, it is not 
possible to program Expedite Base for Windows to send a file to Information Exchange by 
sending a message to Expedite Base for Windows.

Understanding Expedite Base for Windows programming 
considerations 

It is possible to use any Windows development software that supports the Windows API 
functions discussed in this section.

Programming an application for Expedite Base for Windows requires Windows programming 
skills. You should be knowledgable about the following Windows API calls:

■ SendMessage
■ FindWindow
■ WinExec
■ RegisterWindowMessage
■ GlobalGetAtomName
■ GetProfileString
■ WriteProfileString

Basic guidelines are offered on how the above Windows API functions can be used when writing 
an application program.

Understanding installation considerations 
If you want your application program to install Expedite Base for Windows, you must be aware 
of the following considerations:

■ Expedite Base for Windows is installed using InstallShield.

NOTE: For readers familiar with Expedite Base for Windows programming, 
the message-based communication, though similar, does not use Dynamic Data 
Exchange (DDE).

NOTE: These messages do not enable commands that have been specified in 
the Expedite Base for Windows input file to be changed in any way.

NOTE: It is assumed throughout the following programming related sections 
that you have basic Windows programming knowledge. In order to understand 
the programming examples, it is helpful to understand the C programming 
language.
47



Expedite Base for Windows Programming Guide

Understanding interapplication communication
■ Your installation program should configure the WIN.INI file according to the users’ require-
ments or set defaults.

■ Your installation program should check the amount of disk space available before copying 
the files.

There may be a situation where you do not want to include all the Expedite Base for Windows 
files that accompany the package. The following is a list of the files that must be included if 
Expedite Base for Windows is to work correctly: 

■ iebase.exe
■ iebasec32.dll
■ iebasepo32.dll
■ iebasepr32.dll
■ display.scr
■ errormsg.fil
■ errortxt.fil
■ cnnct.scr (connect script file for asynchronous communication)
■ discnnct.scr (disconnect script file for asynchronous communication)

For a listing of all the Expedite Base for Windows files provided in the package, see “Under-
standing Expedite Base for Windows files” on page 14.

Understanding interapplication communication 
For an application program to communicate with Expedite Base for Windows, both applications 
must be loaded. It is logical to assume that your application program will be loaded first, so you 
should implement a mechanism for invoking Expedite Base for Windows.

An application program should be capable of the following:

■ Configuring the WIN.INI file
■ Loading Expedite Base for Windows from disk
■ Controlling Expedite Base for Windows using command messages
■ Receiving status information from Expedite Base for Windows (optional)

These topics are discussed in the following sections.

To facilitate writing applications that communicate with Expedite Base for Windows, two sample 
C-language source files are provided with Expedite Base for Windows:  expwin.h and 
expsampl.c. The expwin.h file provides the #defines for communicating with Expedite Base for 
Windows. The expsampl.c file provides sample code for interapplication messaging. See the 
readme file for more information.
48



Chapter 5. Designing your interface

Setting your application to configure the WIN.INI file
Setting your application to configure the WIN.INI file 
An application program should be able to configure the contents of the WIN.INI file for use with 
Expedite Base for Windows. This requires using the following Windows API function calls:

■ GetProfileString

■ WriteProfileString

The following C-language example uses these API function calls:

int  nBytes     = 0;
char szStart[2] = {""};

/* Search win.ini for Expedite Base section and read in the */
/* value associated with the AutoMode command.              */
nBytes = GetProfileString("Expedite Base", "AutoMode", "", 
       szStart, sizeof(szStart));

/* Set the AutoMode command to the value Y in win.ini       */
/* If either Expedite Base section or AutoMode do not exist,*/
/* WriteProfileString will create them.                     */
WriteProfileString("Expedite Base", "AutoMode", "Y");

Setting your application to load Expedite Base for Windows 
For an application program to invoke Expedite Base for Windows, it must know its location on 
the hard disk. Use the CreateProcess Windows API function to start the program.

Once the program is started, the next step is to set up a message-based conversation.

Setting your application to control Expedite Base for Windows functions
The IEBASE_COMMAND messages are used to control Expedite Base for Windows. You must send 
the appropriate command messages to initiate a conversation between the application program 
and Expedite Base for Windows. Use the following Windows API functions to set your appli-
cation:

The following C-language example uses these Windows API functions:

#define IDENTIFY 0
HWND hWndBase;
/* assuming Expedite Base is loaded, Windows should             */
/* return the window handle to it                               */
hWndBase = FindWindow(NULL,"Expedite Base, for Windows**");
/* Using SendMessage, send a message to Expedite                */
/* The 1st parameter, hWndBase, is the handle to Expedite       */
/* The 2nd parameter is the registered IEBASE_COMMAND message   */
/* The 3rd parameter is the User Apps own main window handle    */
/* The 4th parameter is the number represented Identify         */

FindWindow Establishes the Window handle for Expedite Base for Windows.

SendMessage Sends IEBASE_COMMAND messages to Expedite Base for Windows using its 
handle.
49



Expedite Base for Windows Programming Guide

Setting your application to configure the WIN.INI file
SendMessage(hWndBase, uiBaseCmndMsg, (WPARAM) hWndUserApp, IDENTIFY);

In order for your application program to engage in a message-based conversation with Expedite 
Base for Windows, it must register both IEBASE_EVENT and IEBASE_COMMAND as new messages 
to Windows. Windows checks to see if these message names have already been declared by 
another application program. If so, Windows recognizes them and returns the number identifier 
for each new message. If they have not been registered by another application program, Windows 
creates these as two new message types and returns the number assigned for each message.

Use the Windows API function call, RegisterWindowMessage, to register the new message. The 
following C-language example uses RegisterWindowMessage:

    /* How to register new Windows messages                        */
    UINT uiBaseCmndMsg;
    uiBaseCmndMsg = RegisterWindowMessage("IEBASE_COMMAND");
    /* uiBaseCmndMsg can now be used to send base command messages */
    /* using the SendMessage Windows API function call             */

If your application program registers message names before loading Expedite Base for Windows, 
Windows creates them and returns the appropriate numbers. If Expedite Base for Windows is 
already loaded, Windows registers them and returns the numbers associated with these two 
messages. Either way, Expedite Base for Windows and your application program will both 
understand these two new message types, and the numbers will be meaningless to any other 
application program running under Windows.

When sending command messages to Expedite Base for Windows, it is possible to send param-
eters with those messages. All IEBASE_COMMAND messages sent in Windows contain the 
following parameters: 

NOTE: Expedite Base for Windows must be loaded; otherwise FindWindow will 
fail.

WPARAM Contains the handle of the application program so that Expedite Base for Windows 
knows the identity of the calling application program.

LPARAM Specifies the value of the Expedite Base for Windows command. 

The following section describes all the Expedite Base for Windows commands, with 
the appropriate values, that can be submitted in the LPARAM parameter of the 
IEBASE_COMMAND:

Value Commands

100 Identify

This message is sent by the application program to tell Expedite Base for 
Windows that it wants to start a message-based conversation.

101 Finished

This message is sent by the application program to tell Expedite Base for 
Windows that the conversation is complete. This enables another application 
program to start a conversation if required. Expedite Base for Windows can 
only be in conversation with one application program at a time. If Expedite 
Base for Windows is not in a conversation with an application program, this 
message is ignored.
50



Chapter 5. Designing your interface

Setting your application to configure the WIN.INI file
102 Start

This message instructs Expedite Base for Windows to start a communica-
tions session. If Expedite Base for Windows is already in a communications 
session, this message is ignored.

103 Stop

This message instructs Expedite Base for Windows to stop a communica-
tions session. If Expedite Base for Windows is not in a communications 
session, this message is ignored.

104 Redial

This message instructs Expedite Base for Windows to redial if it is in a valid 
redial state. If Expedite Base for Windows is not in a state where it can redial 
the connection, this message is ignored.

105 Quit

This is equivalent to stopping the session and closing the application 
program in one command. If Expedite Base for Windows is not in a session, 
it unloads itself.

106 Minimize

This message instructs Expedite Base for Windows to display as a visible 
icon at the bottom of the screen. If Expedite Base for Windows is already an 
icon, this message is ignored. This message command works even if the 
window was previously set to invisible.

107 Maximize

This message instructs Expedite Base for Windows to display its window as 
a full-size window, fitting the dimensions of the screen. If Expedite Base for 
Windows is already running full-screen, this message is ignored. This 
message works even if the previous window setting was invisible. This 
message command makes it visible.

108 Restore

This message instructs Expedite Base for Windows to restore its window 
setting to whatever it was before it was hidden. If it was hidden when loaded, 
a default size window is displayed.

109 Hide

This message instructs Expedite Base for Windows to hide its icon from 
view. This has the effect of making the main window invisible. It also 
removes the program entry from the Task List. There is no way of telling that 
Expedite Base for Windows is loaded (or even running), unless an appli-
cation program is available to control its execution. Sending a RESTORE, 
MINIMIZE, or MAXIMIZE message parameter brings the main program 
window back into view.
51



Expedite Base for Windows Programming Guide

Understanding message values returned after sending a message
Understanding message values returned after sending a message 
Expedite Base for Windows returns a status message in response to receiving and processing 
application program messages. Values of the status messages are:

To aid interapplication messages, Expedite Base for Windows sends messages using 
SendMessage. This means that Expedite Base for Windows is in a wait state until the application 
program responds.

Setting your application to receive Expedite Base for Windows 
messages

When a conversation is activated by an application program, Expedite Base for Windows sends 
status messages to the application program throughout a communications session for those 
events specified when the TEXT parameter is specified in the display.scr file.

In earlier versions of Expedite Base for Windows these values were 0, 1, ... 9. These 
values are still supported. If your application uses the old values, then the return 
values are 0 for success or possible failure. The reason for this is that Windows 
returns a value of 0 even if Expedite Base for Windows had not processed the 
message because it was not yet loaded and was not registered to Windows. To work 
around this problem, calling applications must specify a 2 to 3 second wait time after 
loading iebase.exe to allow Expedite Base for Windows to load and do the initial 
processing.

If you use the new values shown previously, then the return value from Expedite 
Base for Windows is 10 if the command was successful. A return value of 0 indicates 
that Expedite Base has not processed the message. There is no need to specify a wait 
time for Expedite Base for Windows to load and initialize.

Refer to the sample files expwin.h and expsampl.c included with Expedite Base for 
Windows for examples of using the IEBASE_COMMAND messages and return status 
messages.

0L The command failed.

1L The message received was invalid.

2L The message received was ignored because Expedite Base for Windows has not yet 
received an IDENTIFY message, or because you already have identified your application 
to Expedite Base for Windows.

3L The REDIAL message received was ignored because redial was not possible at that time.

4L The START command was ignored because Expedite Base for Windows was already 
started.

10L The command was successful.

NOTE: To understand this section, you must be knowledgable about display 
scripts. For more information, see Chapter 13, “The Expedite Base for Windows 
main window.’’
52



Chapter 5. Designing your interface

Setting your application to receive Expedite Base for Windows messages
If the STATUS parameter on the SESSION command is set to n, status information is not processed 
from the display.scr file.  To stop all IEBASE_EVENT messages, turn off the STATUS parameter.

As with IEBASE_COMMAND messages, IEBASE_EVENT messages contain the following param-
eters:

The following examples show how your application should process IEBASE_EVENT messages.

Use the Windows API function call RegisterWindowMessage to register the new message. The 
following C-language example uses RegisterWindowMessage: 

     /* How to register new Windows messages                        */
     UINT uiBaseEventMsg;
     uiBaseEventMsg = RegisterWindowMessage("IEBASE_EVENT");
     /* uiBaseEventMsg can now be used to receive status information */

The following C-language example shows how to receive IEBASE_EVENT messages. The 
szSentBuf must be large enough to cope with the largest string that can be received. This includes 
two bytes for the event number, plus the size of the largest text string in the display.scr file. In 
this example, szSentBuf is set at 255, which should be sufficient.

/* Inside WndProc function */
ATOM           atomBaseTxtId;
static UINT uiBaseEventMsg = 0;
char              szSentBuf[255];
if( uiMessage == uiBaseEventMsg )
   {
   atomBaseTxtId = (ATOM)wParam;
   memset(szSentBuf, NULL, sizeof(szSentBuf));
   if( (GlobalGetAtomName(atomBaseTxtId, szSentBuf,

                                sizeof(szSentBuf))) != NULL )
     {
      wsprintf(szMsg,"Event %.2s Text %s", szSentBuf, szSentBuf+2);
     }
     }

As events occur throughout the cycle of a communications session, Expedite Base for Windows 
associates the display.scr text with an atom number and registers the atom in the global atom 
table. It sends an IEBASE_EVENT message with the WPARAM set to the global atom number to the 
calling application. The application program looks up the atom number in the global atom table 
to retrieve the text item, if the text item is used. It is useful to specify only the variables that your 
application program needs to know about in display.scr TEXT parameters. For example, if you 
want to display the number of characters sent, you can specify the following in display.scr:

CHARSSNT TEXT(%CHARSSNTCNT%);

When your application program receives the CHARSSNT message from Expedite Base for 
Windows, use the associated atom number to retrieve the number of characters sent.

This parameter: Means this:

WPARAM Contains a global atom number referencing the string contained in 
display.scr that was processed. The first two characters of the string 
represented by the atom value are the event number. The rest of the 
string is the display.scr text.

LPARAM This is not used and is set to 0.
53



Expedite Base for Windows Programming Guide

Setting your application to receive Expedite Base for Windows messages
Expedite Base for Windows keeps only one atom number in the global atom table. For each event 
that occurs, Expedite Base for Windows deletes the previous atom table entry and appends a new 
atom number for the current event. Therefore, at any one time, Expedite Base for Windows only 
has one atom table entry, using Windows resources more efficiently.

You may not want to catch every event, and those events which are not required can be ignored. 
You can omit events from display.scr that your application will not use. Figure 1 below lists the 
event numbers that can be passed from Expedite Base for Windows to the application program. 

To determine when the Expedite Base for Windows communications session has ended, process 
the LAST (event number 18) status event message.

Figure 1.  IEBASE_EVENT messages sent to an application program

Events:
Event 
Numbers

Events:
Event 
numbers:

FIRST 0 RESTART 19 

DELAYSESS 1 DIALCYCLE 20

MANUALDIAL 2 PICTURE 23

DIALING 3 INLOGON 24

CONNECTED 4 QUERY 25

WELCOMEMSG 5 PUTMEMBER 26

START 6 GETMEMBER 27

SEND 7 DEFINEALIAS 28

SENDEDI 8 ARCHIVEMOVE 29

RECEIVE 9 AUDIT 30

RECEIVEEDI 10 CANCEL 31

CHARSSNT 11 LIST 32

CHARSRCVD 12 LOSTCONNECT 33

FILESSNT 13 CONNECTING 34

FILESRCVD 14 PURGE 36

END 15 LISTLIBRARIES 37

DISCONNECT 16 LISTMEMBERS 38

EXIT 17 WAITRCV 39

LAST 18 CANWAITRCV 40
54



Chapter 5. Designing your interface

Reviewing an example of an application interface
Reviewing an example of an application interface
This is an example of an application interface that interacts with Expedite Base for Windows. It 
may give you an idea of some things to consider for your interface. 

Company A is an insurance agency that sells policies and processes claims. At the end of each 
day, the company uses an application program to send all transactions to the home office. The 
program provides the following menu options:

■ Process policies
■ Process claims
■ Update profile information
■ Send to home office

When a user selects Process policies or Process claims, a panel appears for the user to enter 
information. The program stores this information in a database.

When the user selects Update profile information, a panel appears for the user to enter profile 
information that Expedite Base for Windows requires. On that panel, the user can update the 
Expedite Base for Windows profile command file (basein.pro) without using a text editor.

When the user selects Send to home office, the application program performs the following 
activities:

■ Extracts all the policy information from the database and builds the file policy.fil

■ Extracts all the claim information from the database and builds the file claims.fil

■ Reads the Expedite Base for Windows profile information from the database and builds 
basein.pro

■ Builds the message command file (basein.msg) to send policy.fil and claims.fil to the home 
office

■ Calls the iebase program to dial the network so Expedite Base for Windows can send the 
files to the home office Information Exchange mailbox

■ Reads the message response file (baseout.msg) to analyze the results of the Information 
Exchange session

■ Stores the results of the previous session in a database

■ Creates a panel to display information about the previous session

■ Stores information about the previous session so the user has a record of the information sent 
to the home office

Using this application program, any user can send files to the home office without having 
detailed knowledge of how Expedite Base for Windows works.
55



Expedite Base for Windows Programming Guide

Other considerations for your application
Other considerations for your application 
The following are three features that you might like to consider incorporating in your application:

■ You may find it useful to include a feature that allows users to receive and install program 
updates and enhancements through Information Exchange. For example, in every session 
include a request for a specific file; that file can be a package that contains the program 
updates and installation procedures. If no files are received, you incur no charge. If you do 
receive a file, and the return code from Expedite Base for Windows is 00000, your appli-
cation can unpack the file and use the install program to install the changes.

This installation would be transparent to the user, and would keep all users at a consistent 
program level. This could be useful for both your application and for Expedite Base for 
Windows.

■ To enhance problem determination, you may find it useful to record problems that occur 
during a transmission or during processing by your application.

You could send this report to a central support center during the next Information Exchange 
session.

■ A trace file (iebase.trc) is sometimes necessary for problem determination for Expedite Base 
for Windows. You may want to include in your interface a feature that, at the user’s request, 
will send the trace file to your support center or to the Customer Care Help Desk, through 
Information Exchange. Alternatively, if a session cannot be established, you may want to 
copy the trace file to diskette.       

Where to read next
For detailed information on sending and receiving files, see Chapter 6, “Sending and receiving 
files.’’ For detailed information on sending and receiving EDI data, see Chapter 7, “Sending and 
receiving EDI data.’’ The remaining chapters provide information on the structure of the 
Expedite Base for Windows commands and response records and describe other features of 
Expedite Base for Windows.

CAUTION:  When you send a trace file through Information Exchange, you must 
rename that trace file. Otherwise, it may be overwritten by the trace file for the 
current session.
56



© Copyright GXS, Inc. 1998, 2005
Chapter 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sending and receiving files

You can use Expedite Base for Windows to send and receive text and binary files. This chapter 
explains how you work with files and discusses the use of the common data header (CDH). It 
also describes the procedures for sending and receiving text and binary files and explains how to 
use the Information Exchange translate table. In addition, this chapter provides user scenarios to 
help you learn more about sending and receiving files.

For information on sending and receiving EDI data, see Chapter 7, “Sending and receiving EDI 
data.’’

For information on sending and receiving compressed data, see Appendix E, “Using data 
compression.’’

Addressing files 
The address you specify when you send files to Information Exchange serves the same purpose 
as the address on a letter. For a letter to be delivered, it must contain the proper address infor-
mation, and so must the files you send to Information Exchange. When you send files, specify 
the Information Exchange mailbox address in the SEND command. For more information, see 
“SEND command” on page 222.

The following sections discuss the various methods you can use to address files.

Using accounts and user IDs 
You can send files using accounts and user IDs. The Information Exchange mailbox address has 
two parts, the account and the user ID. The account can be from 1 to 8 characters in length. The 
user ID is also from 1 to 8 characters in length.

NOTE: The account and user ID combination is unique to each Information 
Exchange system. If you are sending intersystem messages, you use a third part 
of the address, the system ID.
57



Expedite Base for Windows Programming Guide

Sending and receiving e-mail
Using centralized Information Exchange alias tables 
You can also send files using an alias table. An alias table is a list of alternate names that you can 
use to send files to other users. Alias tables are permanent tables that reside within Information 
Exchange. You can make them available to all Information Exchange users (global alias table), 
members of a particular account (organization alias table), or a single user (private alias table).

You can create and maintain alias tables in two ways:

1. Using Information Exchange Administration Services (see the Information Exchange 
Administration Services User’s Guide).

2. Using the DEFINEALIAS command (see “DEFINEALIAS command” on page 188).

Using distribution lists 
A distribution list is another way to send files. You can send the same file to more than one 
person at a time by making a list of users and sending the file to the list. There are two types of 
distribution lists, permanent and temporary.

Permanent distribution lists are permanently stored in Information Exchange. The advantage of 
using these lists is that many people using different types of computers can use them.

Temporary distribution lists last only for the duration of your Information Exchange session. 
When your Information Exchange session ends, the system deletes your temporary lists. To 
create permanent or temporary lists, use the LIST command or Information Exchange Adminis-
tration Services. For more information, see“LIST command” on page 197.

Sending and receiving e-mail 
Electronic mail (e-mail) is correspondence in the form of a file that you transmit over a computer 
network. Different software packages handle e-mail differently. The important thing is that the 
e-mail file looks the same to the receiver as it did to the sender.

As far as the Expedite family products are concerned, e-mail files are made up of 79-byte 
records, padded with blanks if necessary. The 79-byte records are each followed by the 
characters that normally delimit records for the type of platform being used. For example, in 
Expedite Base for Windows, each 79-byte record is delimited by carriage return-line feed 
(CRLF) characters.

To identify the file as being electronic mail, the Expedite family products use the user class 
FFMSG001. This way, the receiving system knows how to format the e-mail records when the 
data is received.

To create an e-mail file, use an editor to create the text for the file, making sure each line of text 
is no longer than 79 bytes and ends with CRLF characters. To send the file, use the FORMAT(Y) 
parameter on the SEND command. FORMAT(Y) tells Expedite Base for Windows to:

■ Pad each line of text with blanks up to 79 bytes, or split lines that are greater than 79 bytes.

■ Add CRLF characters to each line.

CAUTION: If you use the list command with session-level recovery, do not use the 
same distribution list name on more than one list command in the same session.
58



Chapter 6. Sending and receiving files

Understanding ASCII text and binary files
■ Send the file with a user class of FFMSG001.

When you receive an electronic mail file, use the FORMAT(Y) parameter on the RECEIVE 
command so that the file is properly received in the Expedite e-mail format for you to view.

Understanding ASCII text and binary files 
There are two general types of files on the PC, ASCII text and binary. ASCII text files contain 
text that a person can read. They usually contain only characters that you can type from a 
computer keyboard, such as A through Z, 0 through 9, and special characters. Binary files 
contain data that a person cannot read. Executable computer programs are a common type of 
binary file. You cannot use a computer keyboard to type the characters that are in binary files.

Sending and receiving text files 
Readable PC text files consist of ASCII characters; readable text on most mainframe computers 
consists of EBCDIC characters. When Expedite Base for Windows sends a file, it does not know 
the type of system that will receive that file. Because the Information Exchange application 
resides on a host system, Expedite Base for Windows translates all ASCII (text) files to EBCDIC 
and marks the files as EBCDIC in their common data headers (CDHs) when it sends them.

When Expedite Base for Windows receives a file, it checks the CDH to see if the file is EBCDIC 
or binary. If the file is EBCDIC, Expedite Base for Windows translates it to ASCII. If the file 
type is unknown because there is not a CDH, Expedite Base for Windows assumes the file is 
EBCDIC and translates it to ASCII.

Sending and receiving binary files 
Binary files do not contain readable characters. Binary data is in a format that can be read and 
used by a computer; for example, an executable program consists of binary data.

When sending binary data to Information Exchange, it is usually best to avoid translating the 
binary data from ASCII to EBCDIC, because any changes to the binary data may render it 
unusable. Expedite Base for Windows allows you to specify that the file is in a binary format and 
will not translate the data from ASCII to EBCDIC when sending it to Information Exchange. Use 
the DATATYPE parameter on the SEND command to indicate that the file is binary and that trans-
lation should not be done.

When Expedite Base for Windows receives a file, it checks the CDH to see if the file is binary. If 
so, it does not translate the data from EBCDIC to ASCII when receiving it. 

Understanding the translate table 
You can use the Information Exchange translate table or an alternative for ASCII to EBCDIC 
translation. The name of the Information Exchange translate table is iestdtbl. You cannot alter 
this table. It is contained within Expedite Base for Windows; it is not included on your program 
diskette. For a description of the Information Exchange translate table, see Appendix D, “Infor-
mation Exchange translate table.’’

NOTE:  You can use the CLASS parameter on the SEND command to specify a 
user class other than FFMSG001. However, the receiving system will not 
automatically recognize the file as having the Expedite e-mail format. 
59



Expedite Base for Windows Programming Guide

Recovery levels
The Expedite Base for Windows program provides two alternate translate tables:

■ The first is a table matching the IBM eNetwork Personal Communications for Windows 
program. It is called ibm3270.xlt. 

■ The second is a table that provides no translation at all. This table is called noxlate.xlt. When 
Expedite Base for Windows receives a file that does not have a CDH, it assumes the 
EBCDIC to ASCII translation is necessary. If your trading partner is using a product that 
does not support the CDH and is sending you a binary file, use the noxlate.xlt translate table 
when you receive the file. Expedite Base for Windows will use the translate table but will 
not alter the binary file.

To change translate tables, use the TRANSLATE parameter on the TRANSMIT, SEND, SENDEDI, 
RECEIVE, or RECEIVEEDI commands.

Reviewing an example of the TRANSLATE parameter 
The following example illustrates how to specify an alternate translate table using the 
TRANSLATE parameter on the SEND command.

Company A uses a PC to send files to a trading partner. The trading partner uses a mainframe to 
receive the files and downloads them to a PC using a 3270 emulation program. Because 
Company A knows how its trading partner receives files, it uses the ibm3270.xlt alternate 
translate table so that the translation on the sending system is the same as that on the receiving 
system. This prevents damage to data during translation. The following example shows the SEND 
command.

SEND FILEID(FILE1.FIL) ACCOUNT(ACCT) USERID(USER01) TRANSLATE(IBM3270);

The TRANSLATE parameter tells Expedite Base for Windows to use ibm3270.xlt to translate the 
data in the files from ASCII to EBCDIC. When the trading partner receives the files on the 
mainframe and downloads them to the PC, the data looks the same on its PC as it did on 
Company A’s PC.

Recovery levels 
The most important job of your application interface is processing the Expedite Base for 
Windows response file. 

To work with Expedite Base for Windows, you need to understand how it recovers from an error 
during an Information Exchange session.

The are two major types of recovery levels: checkpoint-level and session-level recovery.

Checkpoint-level recovery 
The default recovery level for a session with Information Exchange is checkpoint. This is usually 
the best way to exchange data when using a dial line or when transferring a large number of files 
or a large amount of data.

NOTE:  When you send a file to another PC, the alternate translate table you 
use to send the file must be available on the receiving PC. If the alternate 
translate table is not available, the data will be translated incorrectly and will not 
be usable.
60



Chapter 6. Sending and receiving files

Recovery levels
Checkpoint-level recovery ensures that if the line is disconnected or noisy, Expedite Base for 
Windows can pick up the data transfer at the last checkpoint rather than start the transfer over 
from the beginning.

Checkpoint-level, file-level, and user-initiated recovery are Information Exchange methods that 
Expedite Base for Windows can use to recover data at specific checkpoints. When you use 
session-level recovery and an error occurs (see “Using session-level recovery” on page 76), 
Expedite Base for Windows must retransmit all data for the session. If you are sending large 
amounts of data, retransmission can take several hours. But when you select checkpoint-level, 
file-level, or user-initiated recovery, Expedite Base for Windows can recover data more 
efficiently.

The following table shows when Expedite Base for Windows takes checkpoints for each of these 
recovery methods: 

Checkpoint-level recovery is the default in Expedite Base for Windows. To request one of the 
other recovery methods, use the RECOVERY parameter on the TRANSMIT command with one of 
the following values:

Checkpoint-level recovery File-level recovery User-initiated recovery

• after sending the number 
of bytes you specify in the 
COMMITDATA parameter of 
the TRANSMIT command 
(default is 141000 bytes)

• at the end of each SEND, 
SENDEDI, PUTMEMBER 
command, if the next 
command is not a SEND, 
SENDEDI, or PUTMEMBER 
command

• while receiving data for a 
RECEIVE or RECEIVEEDI 
file   command, if the file 
was sent with checkpoints

• at the end of each RECEIVE 
or RECEIVEEDI command

• after each file sent as a 
result of a SEND, SENDEDI, 
or PUTMEMBER command

• after each file is received 

• while receiving data for a 
RECEIVE or RECEIVEEDI 
file  command, if the file 
was sent with checkpoints

• at the end of each RECEIVE 
or RECEIVEEDI command 

• after each COMMIT 
command, unless there is 
nothing to commit

• at the end of each session, 
even if you have not 
specified a COMMIT 
command

• while receiving data for a 
RECEIVE or RECEIVEEDI 
command, if the file was 
sent with checkpoints

• at the end of each RECEIVE 
or RECEIVEEDI command 

s Session-level recovery

f File-level recovery

u User-initiated recovery
61



Expedite Base for Windows Programming Guide

Recovery levels
The processes for using checkpoint-level, file-level, and user-initiated recovery are very similar. 
Expedite Base for Windows uses the same work files for these recovery methods. Considerations 
for restarting after an error and resetting the Expedite Base for Windows session, described later 
in this chapter, also apply to all three recovery methods. 

Session-level recovery
When using a leased line, you can select session-level recovery, because it is very unlikely the 
line will go down during the data transfer. When you use session-level recovery, there is less 
processing required to recover after a failed session, as it is an all-or-nothing data transfer 
method. 

When using a dial line, you also can select session-level recovery if you are transmitting only a 
small amount of data. If the line is disconnected, simply start the session over from the 
beginning.

Using session-level recovery, however, has its disadvantages. With checkpoint-level recovery, 
Information Exchange commits the data sent or received when a checkpoint takes place during 
the session in short intervals throughout the session. For a session-level recovery session, this 
processing is all done at the end of the session. If the communication line gets disconnected, 
Expedite Base for Windows must start from the beginning the next time a connection is made.

   

CAUTION:  You should never run multiple sessions for the same Information 
Exchange account and user ID from different machines. If you start an Information 
Exchange session using checkpoint-level, file-level, or user-initiated recovery while 
another Information Exchange session with the same account and user ID is running, 
Information Exchange ends the first session and continues the second session. The 
results in the first session depend on whether a checkpoint ended successfully:
    If a checkpoint ended successfully, Information Exchange delivers any data sent 
prior to the checkpoint and deletes any data from the mailbox that was received prior to 
the checkpoint.
    If a checkpoint did not end successfully, Information Exchange does not deliver any 
data and does not delete any received data from the mailbox. This means that data 
received in the first session may be received again in error.
    In either case, you may get an error when you restart the first session.
62



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Understanding post-session processing for checkpoint-level, file-level, 
and user-initiated recovery 

The following sections describe what to do when a session ends in error. Post-session processing 
activities include:

■ Restarting a session
■ Resetting a session
■ Checking the SENT and RECEIVED response records
■ Checking return codes

Restarting a session 
It is important that your application processes the responses in the response file correctly. 
Therefore, you need to understand the difference between session restart and session reset.

You initiate a session restart when an Information Exchange session ends in error and you want 
Expedite Base for Windows to resume the session at the last checkpoint. Before you restart a 
session, correct any problems that caused the previous session to end in error. Do not alter the 
baseout.msg response file or the session.fil session file. You can correct a syntax error in the 
command file to allow the session to continue, but do not add or delete lines from it.

If the session completes abnormally, but you have return records for all of your commands with 0 
return codes, then restart the session to allow it to complete normally. Do not reset the session, or 
lost or duplicate data may occur.

Changing files on restart 
You can change some files before you restart a session. The following list indicates which files 
you cannot change and which you can change with limitations. You can change any files that are 
not on the list.

■ Message command file, basein.msg 

You cannot change any commands or parameters in basein.msg that have been echoed to 
baseout.msg. This includes characters such as blanks and carriage returns that occur between 
commands and parameters. You can change commands and parameters in basein.msg that 
Expedite Base for Windows has written to tempout.msg or that are not shown in 
tempout.msg or baseout.msg.

CAUTION:  Do not erase or alter the session file (session.fil) at any time. If session.fil 
is altered or erased during a restart, data may be duplicated or lost. If session.fil does 
not exist, Expedite Base for Windows starts processing at the beginning of the 
basein.msg file. When this happens, any data sent before the last successful checkpoint 
in the previous session is sent again. In addition, any data that was received during the 
previous session may be overwritten or erased. Files and messages received before the 
last successful checkpoint in the previous session are no longer available from 
Information Exchange. Issuing the same receive command may cause data already 
received, but not processed, to be overwritten by the results of the most recent RECEIVE 
command.

If you have altered or erased your session.fil file, you should review the contents of 
baseout.msg to see which commands processed successfully. Remove these commands 
from basein.msg and reset the session by running iebase reset.
63



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
■ Message response file, baseout.msg 

Do not change baseout.msg.

■ Profile command file, basein.pro 

You can change basein.pro if you want to modify a profile value. However, do not modify 
the COMMTYPE parameter on the TRANSMIT command.

■ Profile response file, baseout.pro 

There is no need to change baseout.pro because Expedite Base for Windows creates a new 
baseout.pro when you restart.

■ Profile information file, iebase.pro 

Never change iebase.pro. If you erase it, Expedite Base for Windows must create another 
iebase.pro using the commands in basein.pro. This means you must provide the required 
profile information again, such as your account, user ID, and password, using profile 
commands. If you erase iebase.pro before restarting, Expedite Base for Windows can still 
restart, but it does not display the error that caused the last session to end.

■ Session work file, session.fil 

Never change this file before restarting. Expedite Base for Windows uses it to restart the 
session.

■ Receive name file, rcvfiles.fil 

Never change this file before restarting. Expedite Base for Windows uses this control file to 
track files it receives during the session.

■ Receive offset file, rcvofset.fil 

Never change this file before restarting. It enables data to be appended correctly after restart.

■ Files being sent or received 

Do not modify files you are sending with the SEND or PUTMEMBER command. Do not modify 
files you are receiving. Changes may cause unpredictable data to be sent or received.

Reviewing examples of session restart 

Example 1
This example illustrates a session in which some commands did not process successfully, and 
you must restart the session.

The files you are sending are test1.snd and test2.snd from the current directory. They have a user 
class of test. On the SEND command for test2.snd, you did not enter an ACCOUNT parameter. The 
following example shows the command file, basein.msg.

SEND    ACCOUNT(ACCT)
USERID(USER1)
CLASS(TEST)
DATATYPE(B);

SEND    FILEID(TEST2.SND)
64



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
USERID(USER1)
CLASS(TEST);

When the session is complete, the return code in the SESSIONEND record is 02806. This return 
code indicates a missing ACCOUNT parameter on the SEND command. Postprocessing of the 
response file shows you what the error is but does not show you which command is in error. The 
following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(IEE346JK);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(IEE346JK) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND     FILEID(TEST1.SND)

ACCOUNT(ACCT)
USERID(USER1)
CLASS(TEST)
DATATYPE(B);

SENT UNIQUEID(27854371) LENGTH(22);
RETURN(00000);

SESSIONEND(02806)
ERRDESC(Incomplete destination on SEND command.)
ERRTEXT(EXPLANATION:  You specified an incomplete destination on the 
SEND)
ERRTEXT(command. The destination must be an ACCOUNT and USERID;)
ERRTEXT(SYSID, ACCOUNT and USERID; ALIAS and ALIASNAME; or LISTNAME.)
ERRTEXT(USER RESPONSE:  Check the message response file, BASEOUT.MSG, 
or)
ERRTEXT(response work file, TEMPOUT.MSG, to determine which SEND 
command)
ERRTEXT(produced the error. Correct the SEND command in the message 
command)
ERRTEXT(file, BASEIN.MSG, and retry the program.);

To determine which command is in error, examine the temporary response work file 
(tempout.msg). It shows the error is on the SEND command for the second file, test2.snd. Correct 
the error by entering an ACCOUNT parameter and restart Expedite Base for Windows. Processing 
will begin at the SEND command for test2.snd. The following example shows the temporary 
response work file, tempout.msg.

SEND    FILEID(TEST2.SND)
USERID(USER1)
CLASS(TEST);

RETURN(02806)
ERRDESC(Incomplete destination on SEND command.)
ERRTEXT(EXPLANATION:  You specified an incomplete destination on the 
SEND)
ERRTEXT(command. The destination must be an ACCOUNT and USERID;)
ERRTEXT(SYSID, ACCOUNT and USERID; ALIAS and ALIASNAME; or LISTNAME.)
ERRTEXT(USER RESPONSE:  Check the message response file, BASEOUT.MSG, 
or)
ERRTEXT(response work file, TEMPOUT.MSG, to determine which SEND 
command)
ERRTEXT(produced the error. Correct the SEND command in the message 
command)
ERRTEXT(file, BASEIN.MSG, and retry the program.);
65



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Example 2 
This example illustrates a session using user-initiated recovery. The session does not end 
successfully because of a syntax error on the RECEIVE command. The RECEIVE command was 
entered as “RECVE.” The following example shows the command file, basein.msg.

SEND    FILEID(TEST1.SND) SEND FILEID(TEST1.SND) ACCOUNT(ACCT) 
USERID(USER2);
RECEIVE FILEID(TESTONE.RCV);
COMMIT;
SEND FILEID(TEST2.SND) ACCOUNT(ACCT) USERID(USER2);
RECVE FILEID(TESTTWO.RCV);
COMMIT;
SEND FILEID(TEST3.SND) ACCOUNT(ACCT) USERID(USER2);

The session ends with a 15040 error on the RECVE command and a 15040 error on the 
SESSIONEND record. Because this is a syntax error, the command in error is found in the 
tempout.msg file. Postprocessing of the response file shows which commands completed 
successfully. The following example shows the message response file (baseout.msg) and the 
response work file (tempout.msg).

baseout.msg 

AUTOSTART SESSIONKEY(STUPU7DO);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(STUPU7DO) IEVERSION(04)
IERELEASE(06);
RETURN(00000);

SEND FILEID(TEST1.SND) ACCOUNT(ACCT) USERID(USER2);
SENT UNIQUEID(STUPWAJN) LENGTH(2400);
RETURN(00000);

RECEIVE FILEID(TESTONE.RCV);
RECEIVED ACCOUNT(*SYSTEM*) USERID(*ERRMSG*) CHARGE(6) LENGTH(257)
FILEID(TESTONE.RCV) MSGDATE(040422) MSGDATELONG(20040422)
MSGTIME(192954) MSGSEQO(001687) MSGNAME(05003) SESSIONKEY(STUPU7DO)
DELIMITED(N) SYSNAME(IBMIE) SYSLEVEL(0450) TIMEZONE(L)
DATATYPE(A) RECFM(????) RECLEN(0) RECDLM(N) UNIQUEID(00000000)
SYSTYPE(01) SYSVER(0);
RETURN(00000);

COMMIT;
RETURN(00000);

SESSIONEND(15040) ERRDESC(Command not recognized.)
ERRTEXT(EXPLANATION:  You specified an unrecognized command in the)
ERRTEXT(command file.)
ERRTEXT(USER RESPONSE:  Check the message response file, baseout.msg,)
ERRTEXT(profile response file, baseout.pro, or response work file,)
ERRTEXT(tempout.msg, to determine which command produced the error.)
ERRTEXT(Correct the appropriate command file and retry the program.);

tempout.msg 

SEND FILEID(TEST2.SND) ACCOUNT(ACCT) USERID(USER2);
SENT UNIQUEID(STUPWEX6) LENGTH(13746);
RETURN(00000);

RECVE
RETURN(15040) ERRDESC(Command not recognized.)
ERRTEXT(EXPLANATION:  You specified an unrecognized command in the)
66



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
ERRTEXT(command file.)
ERRTEXT(USER RESPONSE:  Check the message response file, baseout.msg,)
ERRTEXT(profile response file, baseout.pro, or response work file,)
ERRTEXT(tempout.msg, to determine which command produced the error.)
ERRTEXT(Correct the appropriate command file and retry the program.);

The RETURN(00000) records indicate that the first three commands before the COMMIT command 
completed successfully. The RETURN(00000) and SENT records in tempout.msg for the second 
SEND command indicate that this command completed successfully in tempout.msg. However, 
because the second COMMIT command was not processed due to the syntax error, Information 
Exchange will not deliver the file for the second SEND command.

The RECVE command should be corrected in the basein.msg file and the session restarted. 
Expedite Base for Windows will continue processing after the last successful COMMIT command, 
which in this example is after the first RECEIVE command. Expedite Base for Windows will 
complete processing for the second SEND command, the corrected RECEIVE command, and the 
final SEND.
67



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Resetting a session 
You initiate a session reset when the session ends in error and you do not want Expedite Base for 
Windows to continue the Information Exchange session. When you reset a session, Expedite 
Base for Windows acts as if a session were never active and begins processing at the beginning of 
the command file. There is some risk in using the same command file when you reset a session. 
Any data sent before the last successful checkpoint in the previous session is sent again. Files and 
messages received before the last successful checkpoint in the previous session are no longer 
available from Information Exchange. You must process the data from these received files and 
messages before you use the command file again. Otherwise, the results of the most recent 
RECEIVE commands may overwrite the data in the received files.

When an existing session ends because of an error, partially processing the baseout.msg response 
file can help you determine the commands that completed before the session ended. To partially 
process the response file, process the commands in baseout.msg that completed successfully, 
build a new basein.msg file with the commands that were not processed, and start Expedite Base 
for Windows by typing iebase reset on the command line.

Reviewing examples of session reset 
The following examples illustrate when a session reset is necessary. In these examples, the return 
code is 24100. This return code indicates that the session and Information Exchange checkpoints 
do not match. This is usually caused by accessing Information Exchange using the same account 
and user ID on different machines at the same time.

Example 1 
In this example, you are sending files and the session ends in error.

You are sending 10 files to account act1 and user ID user01. The following example shows the 
command file, basein.msg.

SEND FILEID(ORDER1.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER2.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER3.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER4.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER5.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER6.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER7.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER8.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER9.FIL) ACCOUNT(ACT1) USERID(USER01);
SEND FILEID(ORDER10.FIL) ACCOUNT(ACT1) USERID(USER01);
When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows which commands completed successfully. The 
RETURN(00000) records indicate that the first five SEND commands completed successfully and 
the files were sent to Information Exchange. However, the remaining SEND commands were not 
processed. The following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(OOFUDH5L);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(OOFUDH5L) IEVERSION(04)

NOTE: If the session.fil file does not exist, no checkpoints were taken during 
the previous session and Expedite Base for Windows begins processing at the 
start of the command file. Therefore, partial processing of the response file is not 
necessary.
68



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
IERELEASE(06);
RETURN(00000);
SEND FILEID(ORDER1.FIL) ACCOUNT(ACT1) USERID(USER01);
SENT UNIQUEID(43495778) LENGTH(6572);
RETURN(00000);
SEND FILEID(ORDER2.FIL) ACCOUNT(ACT1) USERID(USER01);
SENT UNIQUEID(74469581) LENGTH(5342);
RETURN(00000);
SEND FILEID(ORDER3.FIL) ACCOUNT(ACT1) USERID(USER01);
SENT UNIQUEID(67856334) LENGTH(3456);
RETURN(00000);
SEND FILEID(ORDER4.FIL) ACCOUNT(ACT1) USERID(USER01);
SENT UNIQUEID(19600628) LENGTH(9865);
RETURN(00000);
SEND FILEID(ORDER5.FIL) ACCOUNT(ACT1) USERID(USER01);
SENT UNIQUEID(37941045) LENGTH(9745);
RETURN(00000);
SEND FILEID(ORDER6.FIL) ACCOUNT(ACT1) USERID(USER01);
SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery, the 
check-)
ERRTEXT(point numbers for the send or receive side of the session do 
not match)
ERRTEXT(the values Information Exchange recorded. Your session file,)
ERRTEXT(SESSION.FIL, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET command line 
para-)
ERRTEXT(meter on the IEBASE command. Also, make sure there is not 
another)
ERRTEXT(user using this user ID. If the problem persists, contact the)
ERRTEXT(Help Desk.)
ERRTEXT(Before starting the next session, review the message response)
ERRTEXT(file, BASEOUT.MSG, to see which commands were processed)
ERRTEXT(successfully. Remove these commands from the message command)
ERRTEXT(file, BASEIN.MSG, so they are not processed again.)
ERRTEXT(Warning: If you reset the session using the RESET command line 
para-)
ERRTEXT(meter you will no longer be able to continue the previous 
session.)
ERRTEXT(Failure to modify the message command file, BASEIN.MSG, before)
ERRTEXT(resetting the session may result in some data being lost or 
duplicated.);

You need to edit the command file and delete the first five SEND commands. Then reset the 
session by entering iebase reset on the command line.

NOTE: If you do not remove the first five SEND commands before you reset the 
session, Expedite Base for Windows sends these files again.
69



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Example 2 
In this example, you are receiving files and the session ends in error.

You are receiving four files from your Information Exchange mailbox. Each file has a different 
user class. The following example shows the command file, basein.msg.

RECEIVE FILEID(RCV1.FIL) CLASS(TEST1);
RECEIVE FILEID(RCV2.FIL) CLASS(TEST2);
RECEIVE FILEID(RCV3.FIL) CLASS(TEST3);
RECEIVE FILEID(RCV4.FIL) CLASS(TEST4);

When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows which commands completed successfully. The 
RETURN(00000) records indicate that the first three RECEIVE commands completed successfully. 
However, the last RECEIVE command was not processed. The following example shows the 
response file, baseout.msg. 

AUTOSTART SESSIONKEY(UYRLKJE3);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(UYRLKJE3) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVE FILEID(RCV1.FIL) CLASS(TEST1);
RECEIVED ACCOUNT(ACT1) USERID(USER01) CLASS(TEST1) CHARGE(5) 
LENGTH(3458)
FILEID(RCV1.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(164717)
MSGSEQO(004322) SESSIONKEY(UYRLKJE3) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND2.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(144255) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(33647334) CODEPAGE(437) SYSTYPE(11) SYSVER(1)
TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVE FILEID(RCV2.FIL) CLASS(TEST2);
RECEIVED ACCOUNT(ACT2) USERID(USER02) CLASS(TEST2) CHARGE(5) 
LENGTH(8872)
FILEID(RCV2.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(164717)
MSGSEQO(004322) SESSIONKEY(UYRLKJE3) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND2.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(144255) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(33647334) CODEPAGE(437) SYSTYPE(11) SYSVER(1)
TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVE FILEID(RCV3.FIL) CLASS(TEST3);
RECEIVED ACCOUNT(ACT3) USERID(USER03) CLASS(TEST3) CHARGE(5) 
LENGTH(9602)
FILEID(RCV3.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(164717)
MSGSEQO(004322) SESSIONKEY(UYRLKJE3) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND2.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(144255) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(33647334) CODEPAGE(437) SYSTYPE(11) SYSVER(1)
TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVE FILEID(RCV4.FIL) CLASS(TEST4);
70



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery, the 
check-)
ERRTEXT(point numbers for the send or receive side of the session do 
not match)
ERRTEXT(the values Information Exchange recorded. Your session file,)
ERRTEXT(SESSION.FIL, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET command line 
para-)
ERRTEXT(meter on the IEBASE command. Also, make sure there is not 
another)
ERRTEXT(user using this user ID. If the problem persists, contact the)
ERRTEXT(Help Desk. Before starting the next session, review the)
ERRTEXT(message response file, BASEOUT.MSG, to see which commands were)
ERRTEXT(processed successfully. Remove these commands from the message)
ERRTEXT(command file, BASEIN.MSG, so they are not processed again.)
ERRTEXT(Warning: If you reset the session using the RESET command line 
para-)
ERRTEXT(meter you will no longer be able to continue the previous 
session.)
ERRTEXT(Failure to modify the message command file, BASEIN.MSG, 
before);
ERRTEXT(resetting the session may result in some data being lost or 
duplicated.);

You need to edit the basein.msg command file and delete the first three RECEIVE commands. 
Then reset the session by entering iebase reset on the command line.

Example 3 
In this example, you are receiving multiple files with one RECEIVE command and the session ends 
in error.

You are receiving six files from your Information Exchange mailbox using the MULTFILES 
parameter on the RECEIVE command. You want to receive the first file in rcv.fil and each subse-
quent file in a new file named by numbering the file extensions starting with 002.

The new extension will be added after any existing extension on the file name; any original 
extension will not be truncated. If more than 999 files are received, the extension becomes four 
digits: .1000, .1001, .1002, and so on. If more than 9999 are received, the extension becomes five 
digits: .10000, .10002, and so on. If more than 99999 are received, the rest of the files are 
appended to the file name in the FILEID with the extension .ovf. 

The following example shows the command file, basein.msg.

RECEIVE FILEID(RCV.FIL) CLASS(TEST4) MULTFILES(Y);

CAUTION: If you specified OVERWRITE(Y) on the session command in basein.pro and 
you reset this session without modifying the command file, you will lose the data in the 
three files you received. For more information, see “SESSION command” on page 
159.

If you specified OVERWRITE(N), and you reset this session without modifying the 
command file, then new data received is appended to the existing files with the same 
name. If Expedite Base for Windows appends data to an existing file, the data may be 
difficult to use.
71



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows that Expedite Base for Windows received three files from your 
Information Exchange mailbox and stored them in rcv.fil, rcv.fil.002, and rcv.fil.003. The 
absence of RETURN(00000) before the SESSIONEND record indicates that more files are in your 
mailbox. The following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(1IIOL4K3);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(1IIOL4K3) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVE FILEID(RCV.FIL) CLASS(TEST4);
RECEIVED ACCOUNT(ACT1) USERID(USER01) CLASS(TEST4) CHARGE(5) 
LENGTH(8744)
FILEID(RCV.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(111717)
MSGSEQO(001955) SESSIONKEY(1IIOL4K3) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND1.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(144255) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(76435623) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(ACT2) USERID(USER02) CLASS(TEST4) CHARGE(5) 
LENGTH(5632)
FILEID(RCF.FIL.002) MSGDATE(040701) MSGDATELONG(20040701) 
MSGTIME(111717)
MSGSEQO(001955) SESSIONKEY(AIIOL4K3) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND2.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(144255) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(76435623) SYSTYPE(11) SYSVER(1) TRANSALTE(IESTDTBL);

RECEIVED ACCOUNT(ACT3) USERID(USER03) CLASS(TEST4) CHARGE(5) 
LENGTH(6970)
FILEID(RCV.FIL.003) MSGDATE(040701) MSGDATELONG(20040701) 
MSGTIME(111717)
MSGSEQO(001955) SESSSIONKEY(1IIOL4K3) DELIMITED(N) SYSNAME(EBWIN95T)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND3.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(144255) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(76435623) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery, the 
check-)
ERRTEXT(point numbers for the send or receive side of the session do 
not match)
ERRTEXT(the values Information Exchange recorded. Your session file,)
ERRTEXT(SESSION.FIL, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET command line 
para-)
ERRTEXT(meter on the IEBASE command. Also, make sure there is not 
another)
ERRTEXT(user using this user ID. If the problem persists, contact the)
ERRTEXT(Help Desk. Before starting the next session, review the)
ERRTEXT(message response file, BASEOUT.MSG, to see which commands)
ERRTEXT(were processed successfully. Remove these commands from the)
ERRTEXT(message command file, BASEIN.MSG, so they are not processed)
72



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
ERRTEXT(again.)
ERRTEXT(Warning: If you reset the session using the RESET command line 
para-)
ERRTEXT(meter you will no longer be able to continue the previous 
session.)
ERRTEXT(Failure to modify the message command file, BASEIN.MSG, before)
ERRTEXT(resetting the session may result in some data being lost or 
duplicated.);

Checking the SENT and RECEIVED response records 
You cannot determine what files Expedite Base for Windows sent or received by examining only 
the RETURN record. You must also examine the SENT and RECEIVED records. SENT response 
records follow SEND commands. If no SENT record exists, Expedite Base for Windows did not 
send a file.

RECEIVED records follow RECEIVE commands. A RECEIVED record is written for each file 
received from Information Exchange. Files that have RECEIVED records are no longer in your 
Information Exchange mailbox and you cannot receive them again. If no RECEIVED record exists 
for a file, Expedite Base for Windows did not receive it.

 

CAUTION:  If you specified overwrite(y) on the session command in basein.pro and 
you reset this session without modifying the command file, you lose the data in the 
three files you received. For more information, see “SESSION command” on page 
159.
If you specified overwrite(n), and you reset this session without modifying the 
basein.msg command file, then new data received is appended to the existing files with 
the same name. If Expedite Base for Windows appends data to an existing file, the data 
may be difficult to use.

Therefore, you need to consider one of the following actions before you reset the 
session.

• Process the data in rcv.fil, rcv.fil.002, and rcv.fil.003; for example, store the data in 
a      database. Then erase the files or specify overwrite(y) on the session command.

• Rename the files rcv.fil, rcv.fil.002, and rcv.fil.003 so that Expedite Base for 
Windows does not overwrite them or append data to them when it receives the 
remaining files.

• Change the name in the fileid parameter on the receive command to something 
other than rcv.fil so that Expedite Base for Windows uses new file names when it 
receives the remaining files

NOTE: You should look only at the SENT and RECEIVED records in 
baseout.msg. You should not rely on SENT and RECEIVED records in 
tempout.msg. The tempout.msg file contains SENT and RECEIVED records 
processed since the last Information Exchange checkpoint.
73



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Checking return codes 
When a session completes, Expedite Base for Windows provides two numeric codes that identify 
the activities it performed. The first code is a 5-digit return code that Expedite Base for Windows 
displays in the SESSIONEND or RETURN response record in baseout.msg. These return codes are 
grouped into categories, such as message command syntax errors and profile command syntax 
errors.
74



Chapter 6. Sending and receiving files

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
The second code is a one to 3-digit error-level code that Expedite Base for Windows writes to a 
file called errorlvl. You can use this error-level code and the Expedite Base for Windows return 
codes to decide what actions, if any, to take in the next session. For descriptions of the error-level 
codes and return codes, see Appendix A, “Expedite Base for Windows error codes and 
messages.’’

The decision to restart or reset a session is based on the return code value in the SESSIONEND 
response record in baseout.msg. The following return codes are grouped into four categories:

■ The return code is 00000, session completed normally. The Expedite Base for Windows 
error-level code is 0.

If the return code is 0, you may still need to process the responses in the response file. For 
example, if you receive multiple files from your mailbox to your system using separate file 
names, you need to know the names of the files and how many you received. If you receive 
files from your mailbox to your system using the original file names, you may need to check 
the file names indicated in the CDH. If you request system messages, such as error messages 
and acknowledgments, you may need to check this information.

Information Exchange places error messages in your mailbox in a fixed format message with 
account *SYSTEM* and user ID *ERRMSG*. To receive these messages, you must issue a 
RECEIVE command for this account and user ID and process the information in the response 
file. This is also how you receive acknowledgments.

■ The return codes are 16000-16999 or 28000-28020, session ended but incomplete. The 
Windows error-level code is 112.

Errors 16000-16999 indicate a problem trying to send the information to the specified desti-
nation. Error 28000 indicates that a warning was generated. Error 28010 indicates that one or 
more of the commands in the command file was not processed because of an error. The error 
number is shown in the RETURN response record immediately following the command that 
caused the error. A description of the error is in the ERRDESC and ERRTEXT records in the 
response file immediately following the SESSIONEND response record.

Error 28020 indicates an error occurred during the disconnect process. The number of the 
error that occurred is shown in a WARNING record following the SESSIONEND record. The 
WARNING record is followed by ERRDESC and ERRTEXT records describing the error.

The information that Expedite Base for Windows displays in the ERRDESC and ERRTEXT 
records is similar to the information in Appendix A, “Expedite Base for Windows error 
codes and messages.’’

■ The return code is one of the following and indicates that a session restart is necessary. 

This return code: Means this: Error-level code

11863, 26996 Wait and try again later 110

02000-04999 Message command syntax errors 111

05000-09999 Profile command syntax errors 104

11000-12004 Network errors 111

12000-12199 Modem script syntax errors 111, 114

12200-12399 Display status script syntax errors 111
75



Expedite Base for Windows Programming Guide

Using session-level recovery
■ The return code indicates that a session reset is necessary. The Expedite Base for Windows 
error-level code is 113 or 114. If the error-level code is 114, you may be able to resolve the 
problem simply by redialing. If this does not resolve the problem, you must reset the session.

• Session start and end error return codes 24000-24699

• Unexpected errors and commit error return codes 31000-31339

In addition, the Customer Care Help Desk may suggest that the session be reset for other 
reasons. Your application interface should offer an easy way to reset the session and partially 
process the response file.

Using session-level recovery 
When using a leased line, you can select session-level recovery, because it is very unlikely the 
line will go down during the data transfer. When you use session-level recovery, there is less 
processing required to recover after a failed session, as it is an all-or-nothing data transfer 
method.

When using a dial line, you can also select session-level recovery if you are transmitting only a 
small amount of data. If the line is disconnected, simply start the session over from the 
beginning.

When you use session-level recovery to transmit data and an error occurs, Expedite Base for 
Windows stops transmission and produces a SESSIONEND record with a return code. You can 
check this return code to determine the cause of the error and correct the problem.

With session-level recovery, if data transmission stops, you must send and receive all files again. 
Although it takes time to retransmit large amounts of data, there are advantages to using session-
level recovery. For example, you do not need to be concerned with determining which files 
Expedite Base for Windows sent successfully and which files you need to resend.

12500-12599 LAN modem configuration script syntax errors 111

13000-13999 Communication device driver errors 111

14000-15999 Parser errors 111

17000-18999 EDI parsing, send, or receive errors 111

19000-19999 TCP/IP communication errors 111

20000-23999 General environment errors 111

24000-24699 Session start and end errors 113

25000 PF key exit 111

26000-26999 Internal communications errors 111, 114

27000-27099 Old message.fil errors 111, 114

27200-27299 Emulator communication errors 111, 114

28100-28200 Miscellaneous command processing errors 111

29998 Modem command processor error 111

31400 Unexpected program interrupt error Unknown

This return code: Means this: Error-level code
76



Chapter 6. Sending and receiving files

Using session-level recovery
If you use multiple START and END commands in basein.msg, there are certain precautions you 
must take. See “Using multiple START and END commands with session-level recovery” on 
page 82 for more information.

If the session completes abnormally, but you have return records for all of your commands with 0 
return codes, then restart the session to allow it to complete normally. Do not reset the session, or 
lost or duplicate data may occur.

Using session-level recovery, however, has disadvantages. With checkpoint-level recovery, 
Information Exchange commits the data sent or received when a checkpoint takes place during 
the session. The commit processing is done in short intervals throughout the session. For a 
session-level recovery session, this processing is all done at the end of the session. So when 
Expedite Base for Windows sends the SESSIONEND command, Information Exchange does not 
return the SESSIONEND response until the commit processing is completed. If a large number of 
files are transferred during the session, the processing takes longer, especially during prime 
business hours.

During the processing, it is possible for the line to be disconnected because of a timeout. 
Expedite ends the session with a 29999 return code, “Session end response failure.” In this case, 
it is not clear whether or not the session ended successfully.

There are several ways to determine if the session was successful. For example, the CHECK 
parameter on the SESSIONEND command indicates to Expedite Base for Windows that you only 
want to check the status of the previous session. If you specify CHECK on the SESSIONEND 
command, do not specify any other commands except the END command in the input file. See 
“START command” on page 233 for more information.

Expedite Base for Windows also provides information about the previous session on the 
STARTED record. This record is written to the output file as a result of a SESSIONEND or 
AUTOSTART command. See “STARTED record” on page 261

After a session fails with 29999, follow these steps:

1. Specify AUTOSTART(N), AUTOEND(N), and RECOVERY(S) on your TRANSMIT command in the 
Expedite profile.

2. Create an input file containing SESSIONEND and END records; an example follows:

START  CHECK(Y);
END;

3. Run Expedite Base for Windows. No data is transferred in the above example, and you are 
not charged for this inquiry.

CAUTION:  If you start an Information Exchange session using session-level recovery 
while another Information Exchange session with the same account and user ID is 
running, Information Exchange ends the first session and starts the second session. 
Information Exchange does not deliver data sent in the first session and does not delete 
received data from the mailbox. This means that data received in the first session may 
be received again in error. The results when the first session ends are unpredictable.

NOTE: Do not specify any other commands in the input file if you specify 
CHECK(Y) on the session start command.
77



Expedite Base for Windows Programming Guide

Understanding post-session processing for session-level recovery
4. Examine the output file to check the LASTSESS parameter value on the STARTED record.

If Expedite Base for Windows reported the 29999 SESSIONEND return code for a session-level 
recovery session, you should switch to checkpoint-level, file-level, or user-level recovery for 
future sessions with a similar number of commands.

If you were only receiving files from your Information Exchange mailbox, make sure all data 
was received by verifying that it is no longer in your mailbox. You can do this by viewing your 
mailbox with Information Exchange Administration Services or by running a QUERY command 
to get a list of AVAILABLE response records for each file in your mailbox. If the data is still in 
your mailbox, switch from session-level recovery to checkpoint-level recovery and run the 
session again to receive the data.

If you were sending files, you must check your audit trail to see if the files were sent. You can do 
this by using Information Exchange Administration Services, or by using Expedite Base for 
Windows to request an audit be sent to your mailbox. Refer to Chapter 9, “Using Expedite Base 
for Windows message commands,’’, and “Using audit trails” on page 263 for more information. 
If the files were not sent, switch to checkpoint-level recovery and run the session again.

When a large number of files is being sent or received, session-level recovery is not recom-
mended. Customers have experienced timeout problems when sending or receiving more than 
700 files (the size of the files does not matter). Use checkpoint-, user-, or file-level recovery 
instead.

Understanding post-session processing for session-level recovery 
The following sections describe what to do when a session ends with an error condition. Post-
session processing activities for session-level recovery include:

■ Processing the response file records
■ Checking return codes

Processing the response file records
When you transmit data, Expedite Base for Windows processes your message command file and 
creates a message response file, baseout.msg. The response records in baseout.msg are free-
format records. Their syntax is the same as that defined for commands. Response records always 
start at the beginning of a line. However, parameters in response records may occur in any 
position and in any order. In addition, Expedite Base for Windows may not show all parameters 
in a response record. When examining response records, consider the following:

■ Assume a default value if you do not get a response record parameter you are expecting. 
This is not an error.

■ Truncate the parameter if a response record is longer than you expect.

LASTSESS(0) Indicates the previous session was successful. No further recovery is 
required.

LASTSESS(1) Indicates the previous session was not successful.

NOTE: You should be prepared for the possibility of new parameters in 
existing response records and entirely new response records that may be 
provided in the future.
78



Chapter 6. Sending and receiving files

Understanding post-session processing for session-level recovery
Checking return codes 
To ensure that Expedite Base for Windows finished processing the message command file, check 
the return code in the SESSIONEND record. Detailed return code descriptions are included in 
Appendix A, “Expedite Base for Windows error codes and messages.’’

The following is a list of the SESSIONEND return codes.

■ 00000 - Session completed normally. The Expedite Base for Windows error-level code is 0.

■ 0 - Expedite Base for Windows processed all commands and all command RETURN records 
contain zero return codes.

■ 28000-28020 - Session ended but was incomplete. The Expedite Base for Windows error-
level code is 112.

These errors indicate that one or more of the commands in the command file was not 
processed because of a command file error or because an error occurred during the 
disconnect process. If the problem was with the command file, correct the command that 
caused the error and run the program again. If the problem is in the disconnect process, the 
session error return code will be 28020. The session completed successfully but you should 
correct the problem so that future sessions disconnect from the network properly. The error 
number is shown in the RETURN response record immediately following the command that 
caused the error. The errors are described in ERRDESC and ERRTEXT records files immedi-
ately following the SESSIONEND response record. If the error is caused by a problem with a 
specific command, such as a syntax error, the command in error is followed by a RETURN 
record with the same return code as the SESSIONEND record.

■ Not 00000, 28010, or 28020 - The Expedite Base for Windows error-levelcode is 110, 111, 
113, or 114.

This error indicates that Expedite Base for Windows did not finish processing the command 
file, the Information Exchange session failed, and none of the file transfer requests in the 
message command file completed. Expedite Base for Windows did not place any mail in 
your trading partner’s Information Exchange mailbox or remove any from your mailbox. 
The SESSIONEND record may include an error description to help you find the problem. A 
command RETURN record may contain the same code and description. If baseout.msg does 
not contain a RETURN record, check baseout.pro for the error. If the return code was 28020, 
then all commands in the command file were processed.

Requests other than file transfer may complete even if the Expedite Base for Windows 
SESSIONEND return code is not 28010, 28020, or 00000. These requests include:

■ ARCHIVEMOVE
■ AUDIT
■ CANCEL
■ DEFINEALIAS
■ GETMEMBER

NOTE: While Expedite Base for Windows is receiving data from Information 
Exchange, it saves the data in files on your PC. Even if a session does not 
complete successfully, Expedite Base for Windows may have received and 
saved data during the session. However, since you are using session-level 
recovery, both Information Exchange and Expedite Base for Windows ignore the 
files that were sent and received during the unsuccessful session. The next time a 
session is started, all the data will be sent and received again.
79



Expedite Base for Windows Programming Guide

Understanding post-session processing for session-level recovery
■ LIST
■ LISTLIBRARIES
■ LISTMEMBERS
■ PURGE

If these requests are followed by a RETURN(00000) in baseout.msg, they completed and you do 
not need to reissue them.

Reviewing examples of session-level recovery 
The following examples illustrate session-level recovery.

Example 1 
This example illustrates a session that ends in error when you are sending files.

You are sending five files to account acct and user ID user01. The following example shows the 
command file, basein.msg.

SEND FILEID(FILE1.FIL) ACCOUNT(ACCT) USERID(USER01);
SEND FILEID(FILE2.FIL) ACCOUNT(ACCT) USERID(USER01);
SEND FILEID(FILE3.FIL) ACCOUNT(ACCT) USERID(USER01);
SEND FILEID(FILE4.FIL) ACCOUNT(ACCT) USERID(USER01);
SEND FILEID(FILE5.FIL) ACCOUNT(ACCT) USERID(USER01);

When the session ends in error, the return code in the SESSIONEND record is 26805. This return 
code indicates that the carrier was lost during data transmission. The two SENT records indicate 
that Expedite Base for Windows sent the first two files before the session ended. However, since 
you are using session-level recovery, Information Exchange will not deliver these files to the 
trading partner’s mailbox until the session ends successfully. You must resend the files. The 
following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(LHSIEJG0);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(LHSIEJG0) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND FILEID(FILE1.FIL) ACCOUNT(ACCT) USERID(USER01);
SENT UNIQUEID(07580371) LENGTH(500);
RETURN(00000);
SEND FILEID(FILE2.FIL) ACCOUNT(ACCT) USERID(USER01);
SENT UNIQUEID(78207881) LENGTH(300);
RETURN(00000);
SEND FILEID(FILE3.FIL) ACCOUNT(ACCT) USERID(USER01);
SESSIONEND(26805)
ERRDESC(Lost carrier.)
ERRTEXT(EXPLANATION:  The carrier was lost during data transmission.)
ERRTEXT(USER RESPONSE:  Retry the program. If the problem persists,)
ERRTEXT(contact the Help Desk.);

To resend the files, run the program again. When Expedite Base for Windows establishes a 
session, it processes all the commands in the command file again so you resend all five files.
80



Chapter 6. Sending and receiving files

Understanding post-session processing for session-level recovery
Example 2 
This example illustrates a session that ends in error when you are receiving files.

You want to receive four files from your Information Exchange mailbox. Each file has a different 
user class. The following example shows the command file, basein.msg. 

RECEIVE FILEID(RCV1.FIL) CLASS(TEST1);
RECEIVE FILEID(RCV2.FIL) CLASS(TEST2);
RECEIVE FILEID(RCV3.FIL) CLASS(TEST3);
RECEIVE FILEID(RCV4.FIL) CLASS(TEST4);

When the session ends in error, the return code in the SESSIONEND record is 26996. This return 
code indicates that Expedite Base for Windows timed out while waiting for a response from the 
network. The three RECEIVED records indicate that you received the first three files before the 
session ended, but you did not receive all four files. The following example shows the response 
file, baseout.msg.

AUTOSTART SESSIONKEY(SKEHGUET);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(SKEHGUET) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVE FILEID(RCV1.FIL) CLASS(TEST1);
RECEIVED ACCOUNT(ACT1) USERID(USER01) CLASS(TEST1) CHARGE(5) 
LENGTH(791)
FILEID(RCV1.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(111717)
MSGSEQO(001955) SESSIONKEY(SKEHGUET) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND1.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);
RECEIVE FILEID(RCV2.FIL) CLASS(TEST2);
RECEIVED ACCOUNT(ACT20 USERID(USER02) CLASS(TEST20 CHARGE(50 
LENGTH(3283)
FILEID(RCV2.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(111717)
MSGSEQO(001955) SESSIONKEY(SKEHGUET) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND2.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);
RECEIVE FILEID(RCV3.FIL) CLASS(TEST3);
RECEIVED ACCOUNT(ACT3) USERID(USER03) CLASS(TEST3) CHARGE(5) 
LENGTH(6227)
FILEID(RCV3.FIL) MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(111717)
MSGSEQO(001955) SESSIONKEY(SKEHGUET) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND3.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

SESSIONEND(26996)
ERRDESC(Timed-out while waiting for a response.)
ERRTEXT(EXPLANATION: DCL timed-out while waiting for a response from 
the)
ERRTEXT(network gateway. This can occur if the line is dropped and)
ERRTEXT(the operating system does not return the lost-carrier)
81



Expedite Base for Windows Programming Guide

Using multiple START and END commands with session-level recovery
ERRTEXT(condition to the program.)
ERRTEXT(USER RESPONSE: Retry the program. If the problem persists, it 
may be)
ERRTEXT(that the Asynchronous Relay is down. Try the program again in)
ERRTEXT(about 30 minutes. If the problem still occurs, contact the)
ERRTEXT(Help Desk.);

Because you are using session-level recovery, Information Exchange ignores the three files it 
sent to you in the previous incomplete session. To receive all the files, run the program again. 
When Expedite Base for Windows establishes a session, it processes all the commands in the 
command file again so that you receive all four files.

Using multiple START and END commands with session-level 
recovery 

It is important to note the difference between an Expedite Base for Windows session and an 
Information Exchange session. 

■ An Expedite Base for Windows session consists of all commands specified in basein.msg 
that are issued during a single network connection. 

■ An Information Exchange session consists of the commands issued between a START 
command and an END command in basein.msg.

The Expedite Base for Windows session is the same as the Information Exchange session when 
there is only one START command and one END command in basein.msg. However, Expedite 
Base for Windows allows the user to start and end multiple Information Exchange sessions 
within a single Expedite Base for Windows connection.

If you use multiple START and END commands in basein.msg, you create an environment similar 
to that of checkpoint-level, file-level, and user-initiated recovery. Each END command stops an 
Information Exchange session. Requests in each Information Exchange session complete even if 
a subsequent Information Exchange session ends in error. Only Information Exchange sessions 
that end in error require you to send or receive data again.

If you specify multiple START and END commands in basein.msg and an error occurs before all 
commands in basein.msg have completed, you must take special measures to process your 
basein.msg and baseout.msg files before restarting. These measures are similar to those you must 
take when doing checkpoint-level, file-level, or user-initiated recovery. That is, you must review 
the contents of baseout.msg to determine which of the Information Exchange sessions completed 
successfully, and which need to be run again. Commands in the sessions that were successful 
must be removed from basein.msg to avoid sending duplicate data or losing received data.

NOTE: If you specified OVERWRITE(N) on the SESSION command in basein.pro 
and you run the program again without deleting the three files you originally 
received, Expedite Base for Windows appends the three files you receive the 
second time to the three files you received the first time. For more information, 
see “SESSION command” on page 159.
82



Chapter 6. Sending and receiving files

Using multiple START and END commands with session-level recovery
When an Information Exchange session has completed, Expedite Base for Windows writes two 
records to baseout.msg. The first is the END record, which is echoed from basein.msg. The 
second record Expedite Base for Windows writes is the RETURN record, which shows the return 
code for the END command. When you see the END and RETURN records in baseout.msg, all 
commands in that Information Exchange session have been completed. Before starting Expedite 
Base for Windows again, you should remove all commands processed successfully from 
basein.msg.

Reviewing examples using multiple Information Exchange sessions with session-level 
recovery 

Example 1
This example illustrates three Information Exchange sessions within a single Expedite Base for 
Windows session. The following shows the contents of basein.msg.

START;
SEND FILEID(FILE1.FIL) ACCOUNT(ACCT) USERID(USER01);
END;
START;
RECEIVE FILEID(RCV.FIL);
END;
START;
SEND FILEID(FILE2.FIL) ACCOUNT(ACCT) USERID(USER02);
END;

Following are the contents of baseout.msg when Expedite Base for Windows has completed 
processing.

START;
STARTED LASTSESS(0) RESPCODE(0000) SESSIONKEY(7DFKL8WY) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(7DFKL8WY);
SEND FILEID(FILE1.FIL) ACCOUNT(ACCT) USERID(USER01);
SENT UNIQUEID(73133557) LENGTH(500);
RETURN(00000);
END;

CAUTION:  Failure to remove commands for successfully completed Information 
Exchange sessions from basein.msg may result in duplicate or lost data in subsequent 
Expedite Base for Windows sessions. When using session-level recovery with multiple 
start and end commands, you must process your basein.msg and baseout.msg files 
similar to the way required for checkpoint-level, file-level, and user-initiated recovery. 
You should use session-level recovery with a single start and end command to avoid 
the need to process these files after incomplete sessions. If you need to run multiple 
Information Exchange sessions within a single Expedite Base for Windows session, 
consider using checkpoint-level, file-level, or user-initiated recovery instead of 
session-level recovery.

NOTE: When Expedite Base for Windows has completed all commands in 
basein.msg, it writes a return code for the Expedite Base for Windows session. The 
return code is specified in the SESSIONEND record in baseout.msg. There will only be 
one SESSIONEND record in baseout.msg regardless of the number of Information 
Exchange sessions started and ended within basein.msg.
83



Expedite Base for Windows Programming Guide

Using multiple START and END commands with session-level recovery
RETURN(00000);
START;

STARTED LASTSESS(0) RESPCODE(0000) SESSIONKEY(SOVSHX25) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(SOVSHX25);
RECEIVE FILEID(RCV.FIL);
RECEIVED ACCOUNT(ACCT) USERID(USER02) CLASS(TEST1) CHARGE(5) 
LENGTH(4101)
FILEID(RCV.FIL) MSGDATE(040809) MSGDATELONG(20040809) MSGTIME(134011)
MSGSEQO(001988) SESSIONKEY(SOUSHX25) DELIMITED(N)
SYSNAME(EB/WIN) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(UNFORMATTED) SENDERFILE(SENDER.FIL) SENDERLOC(EXPBASE)
FILEDATE(040412) FILEDATELONG(20040412) FILETIME(120000) RECFM(????)
RECLEN(0) RECDLM(C) UNIQUEID(73133557) SYSTYPE(15) SYSVER(4)
TRANSLATE(IESTDTBL);
RETURN(00000);
END;
RETURN(00000);

START;
STARTED LASTSESS(0) RESPCODE(0000) SESSIONKEY(9OBSMDNW) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(9OBSMDNW);
SEND FILEID(FILE2.FIL) ACCOUNT(ACCT) USERID(USER02);
SENT UNIQUEID(00959571) LENGTH(1335);
RETURN(00000);
END;
RETURN(00000);
SESSIONEND(00000);

Note that each of the END records is followed by a RETURN record. This means that each of the 
Information Exchange sessions completed. Further, the return code 00000 in the RETURN records 
indicates that each session completed successfully. Finally, the SESSIONEND record indicates the 
completion of the Expedite Base for Windows session.

Example 2
This example uses the same input file as Example 1. However, in this example the output file 
indicates that a problem occurred during the connection. Following are the contents of 
baseout.msg when Expedite Base for Windows has completed processing.

START;
STARTED LASTSESS(0) RESPCODE(0000) SESSIONKEY(JK344HSS) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(JK344HSS);
SEND FILEID(FILE1.FIL) ACCOUNT(ACCT) USERID(USER01);
SENT UNIQUEID(73133557) LENGTH(500);
RETURN(00000);
END;
RETURN(00000);

START;
STARTED LASTSESS(0) RESPCODE(0000) SESSIONKEY(33789667) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(33789667);
RECEIVE FILEID(RCV.FIL);

SESSIONEND(26805)
84



Chapter 6. Sending and receiving files

Receiving multiple files
ERRDESC(Lost carrier.)
ERRTEXT(EXPLANATION:  The carrier was lost during data transmission.)
ERRTEXT(USER RESPONSE:  Retry the program. If the problem persists,)
ERRTEXT(contact the Help Desk.);

In this example, the first Information Exchange session completed successfully, as indicated by 
the END and RETURN(00000) records. However, the second session did not complete successfully. 
The baseout.msg file shows that there are no END or RETURN records associated with the second 
Information Exchange session. The RECEIVE command is, instead, followed by a SESSIONEND 
record indicating the end of the Expedite session. In addition, there are ERRDESC and ERRTEXT 
records with information about the problem.

Because you are using session-level recovery, Expedite Base for Windows will begin processing 
at the beginning of basein.msg the next time it is run. If no changes are made to basein.msg, the 
file that was successfully sent the first time will be sent again, resulting in duplicate data sent to 
Information Exchange. Therefore, before you restart Expedite Base for Windows, you should 
remove the commands associated with this Information Exchange session from basein.msg. The 
new basein.msg should look as follows:

START;
RECEIVE FILEID(RCV.FIL);
END;
START;
SEND FILEID(FILE2.FIL) ACCOUNT(ACCT) USERID(USER02);
END;

Receiving multiple files 
When Expedite Base for Windows processes a RECEIVE command, it uses the parameters in the 
command to determine which files to receive from Information Exchange. You can specify that 
Expedite Base for Windows receives all files in the mailbox, all files sent from a specific account 
and user ID, all files with a specific user class, or any combination of these. See “RECEIVE 
command” on page 207 for detailed information.

In the RECEIVE command, you must specify the name of the file in which Expedite Base for 
Windows is to place the received file. If you have more than one file in your mailbox, you can 
receive the files from the mailbox in a single file or receive each file in a separate file.

When you receive multiple files from your mailbox in a single file, Expedite Base for Windows 
appends the files in the order it receives them. This is the default for receiving multiple files.

To receive multiple files from your mailbox in separate files, specify the value y in the 
MULTFILES parameter. This tells Expedite Base for Windows to place the first file in the file 
you specified and place subsequent files in new files by numbering the file extensions starting 
with 002.

NOTE: When you receive multiple files from your mailbox in a single file, 
specify the value y in the REMOVEOF parameter to remove all end-of-file (EOF) 
characters before Expedite Base for Windows places the files on your PC. 
Otherwise, when you print a file that contains multiple files with EOF 
characters, the EOF character is interpreted as the end of the file and the data 
following that character is not printed. 
85



Expedite Base for Windows Programming Guide

Receiving specific files
The new extension will be added after any existing extension on the file name; any original 
extension will not be truncated. If more than 999 files are received, the extension becomes four 
digits: .1000, .1001, .1002, and so on. If more than 9999 are received, the extension becomes five 
digits: .10000, .10002, and so on. If more than 99999 are received, the rest of the files are 
appended to the file name in the FILEID with the extension .ovf. 

For example, if you specify FILEID(test.msg) and three files are received,  Expedite Base for 
Windows names the files as follows:

File 1 = TEST.MSG
File 2 = TEST.MSG.002
File 3 = TEST.MSG.003

Receiving specific files 
Previous sections of this chapter have demonstrated that you can specify certain criteria on the 
RECEIVE command to limit the files that you receive; for example, receive all files from a 
particular user, or all files with a particular user class.

You also can use the RECEIVE command to specify a date and time range for files you want to 
receive. Expedite Base for Windows checks the date and time the files were sent to you, and 
gives you those files that fall within your specified data and time range.

For example, suppose you wanted to receive only those files sent to you between noon and
6:00 p.m. on June 14, 2004. You would include the following on your RECEIVE command:

STARTDATE(040614) STARTTIME(120000) ENDDATE(040614) ENDTIME(180000) 
TIMEZONE(L)

Expedite Base for Windows also allows you to receive a single, specific file even if other files in 
your mailbox are from the same sender or have the same user class. Each file in your mailbox has 
a unique message key that distinguishes the file from all others. You can issue a RECEIVE 
command, using the MSGKEY parameter to specify the unique message key of the file you want to 
receive.

For example, suppose there were three files in your mailbox from the same user, with the same 
user class. The files were sent to your mailbox on three consecutive days. However, you are only 
interested in receiving the first file, which has a unique message key of 
887A9DE0021FA9C236F8. Your RECEIVE command might look as follows:

RECEIVE FILEID(FIRST.FIL) MSGKEY(887A9DE0021FA9C236F8);

As a result of this command, Expedite Base for Windows receives only the file with this message 
key. To find out what the message key is for a specific file, you can use Information Exchange 
Administration Services, or use the Expedite Base for Windows QUERY command in basein.msg. 
As a response to the QUERY command, Expedite Base for Windows provides information about 
each of the files in your mailbox, including the message key for each file.

“RECEIVE command” on page 207 provides information about the format of the RECEIVE 
command. “Querying a mailbox” on page 265 provides more information about using the QUERY 
command. 
86



Chapter 6. Sending and receiving files

SEND and RECEIVE file number limits
SEND and RECEIVE file number limits 
Information Exchange limits the number of files that can be sent and received between commits 
because of the processing requirements involved. The current limit of 1,000 files is an Infor-
mation Exchange value that can be set differently in different Information Exchange installa-
tions. Contact your marketing representative to determine the maximum for Information 
Exchange installations outside the U.S.

There are also limitations in the number of files that can be sent to and received from Expedite 
Base for Windows, depending on the type of recovery you are using. This section discusses 
limitations that you should take into consideration for your installation.

User-level recovery 
If you use user-level recovery, you must not specify more than 1,000 SEND, SENDEDI, or 
PUTMEMBER commands without specifying a COMMIT command. Do not send more than 1,000 
EDI envelopes within a single file, because each envelope counts as a file.

Checkpoint-level recovery 
If you use checkpoint-level recovery, Expedite Base for Windows performs a COMMIT after 
sending or receiving the number of characters specified in the COMMITDATA parameter on the 
TRANSMIT command in basein.pro. The default value is 141000. Do not attempt to send or 
receive more than 1,000 files whose combined size is less than the value of the COMMITDATA 
parameter. If you want to do this, either lower the value in the COMMITDATA parameter or 
decrease the number of files being sent or received to allow a COMMIT to be done before the 
1,000 file limit is reached.

File-level recovery 
If you use file-level recovery, there is no limitation on the number of files you can send or 
receive. This is because each file is committed as it is sent or received, and the maximum number 
of files between commits is 1. If you are sending or receiving many small files, you can get better 
performance using checkpoint-level recovery.

Session-level recovery 
If you use session-level recovery and try to send more files than the limit, you will receive an 
error from Information Exchange that Expedite Base for Windows reports to you as SESSIONEND 
return code 31360. In this case, break your input file into multiple input files and run Expedite 
Base for Windows for each of the input files.

If you have more than 1,000 files in your mailbox that match your receive request, Information 
Exchange stops sending them when the 1,000 file limit is reached. If you have more files in your 
mailbox, Expedite returns a 28171 value in the RETURN parameter after the last file was received. 
The SESSIONEND code is 28010, indicating the session completed successfully but not all 
commands were processed. The data you received is no longer in your Information Exchange 
mailbox, but there are still additional files in the mailbox that match your receive request. 

Before running Expedite Base for Windows again to receive the remaining files, process the data 
already received to ensure that the files are not overwritten during the next session with Infor-
mation Exchange. See “Using session-level recovery” on page 76 for more information on 
87



Expedite Base for Windows Programming Guide

SEND and RECEIVE file number limits
processing received files when using session-level recovery. See “Using session-level recovery” 
on page 130 for more information about processing received EDI data when using session-level 
recovery.
88



Chapter 6. Sending and receiving files

Examples of using Expedite Base for Windows
Examples of using Expedite Base for Windows 
The following examples illustrate how companies can use Expedite Base for Windows. These 
examples may help you implement this application in your company.

Example 1
Company A is an insurance agency that sells policies and processes claims. At the end of each 
business day, Company A runs an application program to collect information about the day’s 
transactions and prepare the information for transmission to the home office. The program writes 
all claim information to the file claims.fil and writes all policy information to policy.fil. Every 
night the company sends these two files to the home office, and the home office sends the agency 
updated claim information in update.fil.

The activities that Company A needs to perform include:

■ Create a standard message command file (basein.msg) to send and receive the same files 
every night and receive any system error messages.

■ Specify a delayed transmission for the middle of the night when telephone and Information 
Exchange charges are lower.

■ Specify checkpoint-level recovery since the files contain large amounts of data.

■ Write an application interface to:

• Read the message response file and write any errors to an error log.

• Process the message response file and modify the message command file as needed 
when a session does not complete.

■ Review the error log and database to determine the results of the Information Exchange 
session.

The following example shows the message command file.

SEND FILEID(CLAIMS.FIL) ACCOUNT(HOME) USERID(OFFICE) CLASS(CLAIMS);
SEND FILEID(POLICY.FIL) ACCOUNT(HOME) USERID(OFFICE) CLASS(POLICY);
RECEIVE FILEID(UPDATE.FIL) ACCOUNT(HOME) USERID(OFFICE) CLASS(UPDATE);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

In this file, Company A is entering commands to send claims.fil to account home and user ID 
office with the user class claims and policy.fil to the same account and user ID with the user class 
policy.

The company also wants to receive any files in its mailbox from account home and user ID office 
with the user class update. In addition, it wants to receive any system error messages that Infor-
mation Exchange places in its mailbox. The system error messages have an account of 
*SYSTEM* and a user ID of *ERRMSG*. Company A wants to receive any error messages in 
errors.fil. 
89



Expedite Base for Windows Programming Guide

Examples of using Expedite Base for Windows
The following example shows the message response file, baseout.msg.

AUTOSTART SESSIONKEY(SKEHSLKJ);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(SKEHSLKJ) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND FILEID(CLAIMS.FIL) ACCOUNT(HOME) USERID(OFFICE) CLASS(CLAIMS);
SENT UNIQUEID(44063134) LENGTH(215432);
RETURN(00000);
SEND FILEID(POLICY.FIL) ACCOUNT(HOME) USERID(OFFICE) CLASS(POLICY);
SENT UNIQUEID(64554922) LENGTH(142154);
RETURN(00000);
RECEIVE FILEID(UPDATE.FIL) ACCOUNT(HOME) USERID(OFFICE) CLASS(UPDATE);
RECEIVED ACCOUNT(HOME) USERID(OFFICE) CLASS(UPDATE) CHARGE(5) 
LENGTH(1202)
FILEID(UPDATE.FIL) MSGDATE(040112) MSGDATELONG(20040112) 
MSGTIME(113314)
MSGSEQO(001950) SESSIONKEY(SKEHSLKJ) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(UPDATE.A) SENDERLOC(EXPBASE) FILEDATE(040110)
FILEDATELONG(20040110) FILETIME(160340) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(16662366) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

This file shows the commands from the message command file along with their associated 
response records and return codes.

The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates that the 
session started successfully.

The SENT records indicate that Expedite Base for Windows sent the files. These records also 
provide information about the unique ID Expedite Base for Windows assigned the files and the 
length of the files. The 00000 return code in the RETURN records indicates that the commands 
completed successfully.

The RECEIVED record indicates that Expedite Base for Windows received one file and provides 
information about the file. The 00000 return code in the RETURN record indicates that the 
command completed successfully.

The second RECEIVE command is not followed by any RECEIVED records. Instead, it is immedi-
ately followed by a RETURN record with a 00000 return code. This means that the command 
completed successfully, but there were no system error messages to receive.

The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates that the session 
ended successfully. The 00000 return code in the SESSIONEND record indicates that all the 
commands completed successfully.
90



Chapter 6. Sending and receiving files

Examples of using Expedite Base for Windows
Example 2
Company B is a hardware store that sends orders electronically to hardware manufacturers. The 
company places orders once a week to all of the manufacturers on the same day and requests 
delivery acknowledgments when the manufacturers receive the orders.

Because the order files contain small amounts of data, Company B decides to simplify its 
programming tasks by using session-level recovery. This means that if a session ends 
unexpectedly, the company must resend all the files.

The following summarizes the activities Company B needs to perform:

■ Create a panel-driven program that a manager can use to order products. The program needs 
to create the necessary order files and the SEND commands in basein.msg for each file. It also 
needs to read the message response file and write any errors to an error log when the session 
ends.

■ Specify session-level recovery.

The following example shows the message command file, basein.msg.

SEND FILEID(WIDGETS.FIL) ACCOUNT(WIDG) USERID(WIDGETS) CLASS(COMPANYB);
SEND FILEID(GIDGETS.FIL) ACCOUNT(GIDG) USERID(GIDGETS) CLASS(COMPANYB);
SEND FILEID(GADGETS.FIL) ACCOUNT(GADG) USERID(GADGITS) CLASS(COMPANYB);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

In this file Company B is entering commands to send three order files with the user class 
companyb. The company also wants to receive any system error messages that Information 
Exchange places in its mailbox. The system error messages have an account of *SYSTEM* and 
a user ID of *ERRMSG*. Company B wants to receive any error messages in errors.fil. The 
following example shows the message response file, baseout.msg.

AUTOSTART SESSIONKEY(1DDHY3T3);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(1DDHY3T3) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND FILEID(WIDGETS.FIL) ACCOUNT(WIDG) USERID(WIDGETS) CLASS(COMPANYB);
SENT UNIQUEID(09383850) LENGTH(1525);
RETURN(00000);
SEND FILEID(GIDGETS.FIL) ACCOUNT(GIDG) USERID(GIDGETS) CLASS(COMPANYB);
SENT UNIQUEID(54803437) LENGTH(1267);
RETURN(00000);
SEND FILEID(GADGETS.FIL) ACCOUNT(GADG) USERID(GADGITS) CLASS(COMPANYB);
SENT UNIQUEID(09874578) LENGTH(856);
RETURN(00000);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RETURN(00000);
AUTOEND;
RETURN(00000);
SESSIONEND(00000);

This file shows the commands from the message command file along with their associated 
response records and return codes.

NOTE: Because Company B is using session-level recovery, it does not need to 
partially process the message response file when a session ends unexpectedly. 
However, Company B should still review the message response file to review what 
happened in the previous session and to check for error codes and error messages.
91



Expedite Base for Windows Programming Guide

Examples of using Expedite Base for Windows
The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates that the 
session started successfully.

The SENT records indicate that Expedite Base for Windows sent the files. These records also 
provide information about the length of the files and the unique ID Expedite Base for Windows 
assigned the files. The 00000 return code in the RETURN records indicates that the commands 
completed successfully.

The RECEIVE command is not followed by any RECEIVED records. Instead, it is followed by a 
RETURN record with a 00000 return code. This means that the command completed successfully, 
but there were no system error messages to receive.

The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates that the session 
ended successfully. The 00000 return code in the SESSIONEND record indicates that all the 
commands completed successfully.

Example 3
Company C is an engineering firm that sends files that contain CAD/CAM drawings, which are 
in a special data format that must be treated like binary data. The company also sends free-format 
messages and receives requests for proposals (RFPs). The employees use a panel-driven program 
to send these files and messages. The program stores the e-mail messages in email.fil.

On occasion, the company receives RFPs from different sources. Because it does not know when 
to expect these requests, the company queries its mailbox every day.

Expedite Base for Windows performs these activities when an employee initiates a session with 
Information Exchange:

■ Sends CAD/CAM files as binary data
■ Sends the free-format message file
■ Sends a QUERY command to obtain a list of the files in the company mailbox
■ Receives any system error messages
■ Uses checkpoint-level recovery because the files contain large amounts of data

Company C’s program performs these activities at the end of each session:

■ Reads the message response file and writes any errors to an error log
■ Optionally updates a database to indicate which files Expedite Base for Windows sent
■ In case of an incomplete session, processes the message response file and modifies the 

message command file as needed
■ Displays a list of files that are in the company mailbox

The following example shows the message command file, basein.msg.

SEND FILEID(CADCAM.FIL) ACCOUNT(ABCD) USERID(ENGIN1) CLASS(DRAWING)
DATATYPE(B);
SEND FILEID(EMAIL.FIL) ACCOUNT(ABCD) USERID(ENGIN1) FORMAT(Y);
QUERY;
AUDIT STARTDATE(040601) ENDDATE(040701);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

In this file, Company C is entering commands to send cadcam.fil to account abcd and user ID 
engin1 with the user class drawing. Using the DATATYPE parameter, the company indicates that 
Expedite Base for Windows should treat the data in this file as binary data (b), which does not get 
92



Chapter 6. Sending and receiving files

Examples of using Expedite Base for Windows
translated to EBCDIC when it is sent to Information Exchange. The company is also sending an 
e-mail file (email.fil) to the same user to which it is sending cadcam.fil. The value y in the 
FORMAT parameter tells Expedite Base for Windows to send the file to Information Exchange 
with a user class of FFMSG001.

In addition, Company C wants to obtain a list of files in its mailbox. It also wants audit records 
for messages and files from June 1, 2004, to July 1, 2004, and wants to receive any system error 
messages that Information Exchange places in the mailbox. The system error messages have an 
account of *SYSTEM* and a user ID of *ERRMSG*. Company C receives error messages in 
errors.fil.

The following example shows the message response file, baseout.msg.

AUTOSTART SESSIONKEY(NJHSTEGF);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(NJHSTEGF) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SEND FILEID(CADCAM.FIL) ACCOUNT(ABCD) USERID(ENGIN1) CLASS(DRAWING)
DATATYPE(B);
SENT UNIQUEID(87578890) LENGTH(1264898);
RETURN(00000);

SEND FILEID(EMAIL.FIL) ACCOUNT(ABCD) USERID(ENGIN1) FORMAT(Y);
SENT UNIQUEID(35879068) LENGTH(948);
RETURN(00000);

QUERY;
AVAILABLE ACCOUNT(WXYZ) USERID(WXYZ001) MSGKEY(11111111111111111111)
CLASS(RFP) MSGDATE(040601) MSGDATELONG(20040601) MSGTIME(081522)
LENGTH(5000) SYSNAME(EB/WIN) SYSLEVEL(0450) DATATYPE(A)
EDITYPE(UNFORMATTED) SENDERFILE(AFILE.TXT) SENDERLOC(C:\EXPEDITE)
FILEDATE(040528) FILEDATELONG(20040528) FILETIME(152645) RECFM(????)
RECLEN(0) UNIQUEID(44567963) SYSTYPE(12) SYSVER(4) TRANSLATE(IESTDTBL);
AVAILABLE ACCOUNT(WXYZ) USERID(WXYZ001) MSGKEY(22222222222222222222)
CLASS(RFP) MSGDATE(040601) MSGDATELONG(20040601) MSGTIME(081522)
LENGTH(5000) SYSNAME(EB/WIN) SYSLEVEL(0450) DATATYPE(A)
EDITYPE(UNFORMATTED) SENDERFILE(AFILE.TXT) SENDERLOC(C:\EXPEDITE)
FILEDATE(040528) FILEDATELONG(20040528) FILETIME(152645) RECFM(????)
RECLEN(0) UNIQUEID(38573092) SYSTYPE(12) SYSVER(4) TRANSLATE(IESTDTBL);
AVAILABLE ACCOUNT(WXYZ) USERID(WXYZ001) MSGKEY(94843039838303893000)
CLASS(FFMSG001) MSGDATE(040601) MSGDATELONG(20040601) MSGTIME(083015)
LENGTH(256) SYSNAME(EB/WIN) SYSLEVEL(0450) DATATYPE(A)
EDITYPE(UNFORMATTED) SENDERFILE(AFILE.TXT) SENDERLOC(C:\EXPEDITE)
FILEDATE(040528) FILEDATELONG(20040528) FILETIME(152645) RECFM(????)
RECLEN(0) UNIQUEID(38572033) SYSTYPE(12) SYSVER(4) TRANSLATE(IESTDTBL);
RETURN(00000);

AUDIT STARTDATE(040601) ENDDATE(040701);
RETURN(00000);

RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

This file shows the commands from the message command file along with their associated 
response records and return codes.
93



Expedite Base for Windows Programming Guide

Examples of using Expedite Base for Windows
The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates that the 
session started successfully.

The SENT records indicate that Expedite Base for Windows sent the files. These records also 
provide information about the length of the files and the unique ID Expedite Base for Windows 
assigned the files. The 00000 return code in the RETURN records indicates that the commands 
completed successfully.

The responses to the QUERY command are the AVAILABLE records. The AVAILABLE records 
indicate that there are three files in your Information Exchange mailbox ready to be received. 
The user class (FFMSG001) in the last AVAILABLE record indicates that it is a free-format 
message. Company C can use the MSGKEY value in the AVAILABLE records to receive that 
specific file by using the MSGKEY parameter in the RECEIVE (or RECEIVEEDI) command. For more 
information, see “RECEIVE command” on page 207.

The 00000 return code in the RETURN record after the AUDIT command indicates that Infor-
mation Exchange placed an audit file in the company mailbox with an account of *SYSTEM* 
and a user ID of *AUDITS*. To receive this file, Company C needs to enter a RECEIVE command 
in the message command file and run another Information Exchange session.

The RECEIVE command is not followed by any RECEIVED records. Instead, it is followed by a 
RETURN record with a 00000 return code. This means that the command completed successfully, 
but there were no system error messages to receive.

The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates that the session 
ended successfully. The 00000 return code in the SESSIONEND record indicates that all the 
commands completed successfully.

Example 4
Company D is a manufacturer that sells widgets to hardware stores. Each day Company D 
receives orders from hardware stores electronically. All widget orders in the company mailbox 
have a user class of widgets. The company receives these order files in a single file so that a clerk 
can enter the information in the order entry system.

On occasion, the clerk erases a widget order accidentally. When this happens, the clerk requests 
the archived copy of the file from Information Exchange.

Company D also receives company profiles from new hardware stores. These files all have the 
user class profile. When Company D receives more than one profile, it receives each profile in a 
different file.

Company D needs to create a message command file (basein.msg) to:

■ Receive all order files in a single file
■ Receive company profiles in separate files
■ Move a file from archive to the company mailbox
■ Receive any system error messages

The following example shows the message command file, basein.msg.

RECEIVE FILEID(ORDERS.FIL) CLASS(WIDGETS) ARCHIVEID(930601W) 
MULTFILES(N)
REMOVEOF(Y);
94



Chapter 6. Sending and receiving files

Examples of using Expedite Base for Windows
RECEIVE FILEID(PROFILE.FIL) CLASS(PROFILES) ARCHIVEID(930601P) 
MULTFILES(Y);
ARCHIVEMOVE ARCHIVEID(980531P);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

In this file Company D is entering commands to receive files with the user class widgets. The 
value n in the MULTFILES parameter tells Expedite Base for Windows to place all of these files in 
a single file (orders.fil). The value y in the REMOVEOF parameter tells Expedite Base for 
Windows to remove EOF characters as it stores the data. The value in the ARCHIVEID parameter 
is the archive reference identifier the company wants Information Exchange to assign the file.

Company D also wants to receive any files with the user class profiles. The value y in the 
MULTFILES parameter tells Expedite Base for Windows to place the first file in profile.fil and 
create new separate files for subsequent files and name them by numbering the extensions 
starting with 002.

The new extension will be added after any existing extension on the file name; any original 
extension will not be truncated. If more than 999 files are received, the extension becomes four 
digits: .1000, .1001, .1002, and so on. If more than 9999 are received, the extension becomes five 
digits: .10000, .10002, and so on. If more than 99999 are received, the rest of the files are 
appended to the file name in the FILEID with the extension.ovf. 

In addition, the company wants Information Exchange to copy a file from the archive to the 
company mailbox, and receive any system error messages.

The following example shows the message response file, baseout.msg.

AUTOSTART SESSIONKEY(EUUFHHUY);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(EUUFHHUY) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVE FILEID(ORDERS.FIL) CLASS(WIDGETS) ARCHIVEID(930601W) 
MULTFILES(N) REMOVEOF(Y);
RECEIVED ACCOUNT(AAAA) USERID(AAAA01) CLASS(WIDGETS) CHARGE(1) 
LENGTH(7876)
FILEID(ORDERS.FIL) MSGDATE(040603) MSGDATELONG(20040603) 
MSGTIME(120132)
MSGSEQO(489028) SESSIONKEY(EUUFHHUY) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(AAAA.FIL) SENDERLOC(EXPBASE) FILEDATE(040601)
FILEDATELONG(20040601) FILETIME(123000) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(34092819) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(BBBB) USERID(BBBB01) CLASS(WIDGETS) CHARGE(1) 
LENGTH(8722)
FILEID(ORDERS.FIL) MSGDATE(040603) MSGDATELONG(20040603) 
MSGTIME(120132)
MSGSEQO(489028) SESSIONKEY(EUUFHHUY) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(BBBB.FIL) SENDERLOC(EXPBASE) FILEDATE(040601)
FILEDATELONG(20040601) FILETIME(123000) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(34092819) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(CCCC0 USERID(CCCC01) CLASS(WIDGETS) CHARGE(1) 
LENGTH(4580)
FILEID(ORDERS.FIL) MSGDATE(040603) MSGDATELONG(20040603) 
MSGTIME(120132)
MSGSEQO(489028) SESSIONKEY(EUUFHHUY) DELIMITED(N) SYSNAME(EB/WIN)
95



Expedite Base for Windows Programming Guide

Examples of using Expedite Base for Windows
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(CCCC.FIL) SENDERLOC(EXPBASE) FILEDATE(040601)
FILEDATELONG(20040601) FILETIME(123000) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(34092819) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVE FILEID(PROFILE.FIL) CLASS(PROFILES) ARCHIVEID(930601P) 
MULTFILES(Y);
RECEIVED ACCOUNT(DDDD) USERID(DDDD01) CLASS(PROFILES) CHARGE(1) 
LENGTH(1756)
FILEID(PROFILE.FIL) MSGDATE(040603) MSGDATELONG(20040603) 
MSGTIME(120132)
MSGSEQO(489028) SESSIONKEY(EUUFHHUY) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(DDDD.PRO) SENDERLOC(EXPBASE) FILEDATE(040601)
FILEDATELONG(20040601) FILETIME(123000) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(34092819) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(EEEE) USERID(EEEE01) CLASS(PROFILES) CHARGE(1) 
LENGTH(4752)
FILEID(PROFILE.FIL.002) MSGDATE(040603) MSGDATELONG(20040603) 
MSGTIME(120132)
MSGSEQO(489028) SESSIONKEY(EUUFHHUY) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(DDDD.PRO) SENDERLOC(EXPBASE) FILEDATE(040601)
FILEDATELONG(20040601) FILETIME(123000) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(34092819) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(FFFF) USERID(FFFF01) CLASS(PROFILES) CHARGE(1) 
LENGTH(2004)
FILEID(PROFILE.FIL.003) MSGDATE(040603) MSGDATELONG(20040603) 
MSGTIME(120132)
MSGSEQO(489028) SESSIONKEY(EUUFHHUY) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(DDDD.PRO) SENDERLOC(EXPBASE) FILEDATE(040601)
FILEDATELONG(20040601) FILETIME(123000) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(34092819) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

ARCHIVEMOVE ARCHIVEID(930531P);
MOVED NUMBER(1);
RETURN(00000);

RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

This file shows the commands from the message command file along with their associated 
response records and return codes.

The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates that the 
session started successfully.

The 00000 return code in the RETURN record after the third RECEIVED record indicates that 
Expedite Base for Windows received three files in orders.fil.
96



Chapter 6. Sending and receiving files

Examples of using Expedite Base for Windows
The next three RECEIVED records indicate that Expedite Base for Windows received three files 
with the user class profiles (profile.fil, profile.fil.002, and profile.fil.003).

The MOVED record after the ARCHIVEMOVE record indicates that Information Exchange copied 
one file from Information Exchange archive to the company mailbox.

The last RECEIVE command is not followed by any RECEIVED records. Instead, it is followed by a 
RETURN record with a 00000 return code. This means that the command completed successfully, 
but there were no system error messages to receive.

The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates that the session 
ended successfully. The 00000 return code in the SESSIONEND record indicates that all the 
commands completed successfully.

Example 5
Company E is a widget manufacturer that receives its software from a vendor. The vendor is 
responsible for setting up the company’s PCs, installing all software, and providing code updates. 
The vendor sends the code update file to the company’s Information Exchange mailbox, and 
Company E receives the file using the ORIGFILE parameter. This parameter tells Expedite Base 
for Windows to receive the updates in a file using the file name from the sending system. The 
original file name from the sending system is in the CDH. Therefore, both the vendor and 
Company E must be using versions of the Expedite products that support the CDH.

Company E needs to create a message command file (basein.msg) to:

■ Receive code updates in a file using the file name from the sending system
■ Receive any system error messages

The following example shows the message command file, basein.msg.

RECEIVE FILEID(c:\MYCODE\CODE.FIL) CLASS(CODE) ORIGFILE(Y);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

In this file Company E is entering commands to receive files with the user class code. The value 
y in the ORIGFILE parameter tells Expedite Base for Windows to place this data in files using the 
file names from the sending system. The value c:\mycode\code.fil in the FILEID parameter tells 
Expedite Base for Windows to place the files in code.fil in the mycode directory if the files do not 
have CDHs. If the files have CDHs, and if the original file name is a valid DOS file name, then 
Expedite Base for Windows ignores the file name code.fil in the FILEID parameter, but uses the 
path.

Company E also wants to receive any system error messages that Information Exchange places in 
its mailbox. The system error messages have an account of *SYSTEM* and a user ID of 
*ERRMSG*. The company wants to receive any error messages in errors.fil.

The following example shows the message response file, baseout.msg.

AUTOSTART SESSIONKEY(11OI8E3U);
STARTED LASTSESS(0) RESPCODE(0000) SESSIONKEY(11OI8E3U) IEVERSION(04)
IERELEASE(06);
RETURN(00000);

NOTE: When Company E uses the ORIGFILE parameter, it must use the FILEID 
parameter in case the file does not have a CDH.
97



Expedite Base for Windows Programming Guide

Examples of using Expedite Base for Windows
RECEIVE FILEID(C:\MYCODE\CODE.FIL) CLASS(CODE) ORIGFILE(Y);
RECEIVED ACCOUNT(VEND) USERID(VENDOR) CLASS(CODE) CHARGE(5) 
LENGTH(7776)
FILEID(C:\MYCODE\ORDER.EXE) MSGDATE(040603) MSGDATELONG(20040603)
MSGTIME(115306) MSGSEQO(001952) SESSIONKEY(11OI8E3U) DELIMITED(N)
SYSNAME(EB/WIN) SYSLEVEL(0450) TIMEZONE(L)
DATATYPE(A) EDITYPE(UNFORMATTED) SENDERFILE(ORDER.EXE)
SENDERLOC(EXPBASE) FILEDATE(040601) FILEDATELONG(20040601)
FILETIME(160340) RECFM(????) RECLEN(00000) RECDLM(C)
UNIQUEID(09566269) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

This file shows the commands from the message command file along with their associated 
response records and return codes.

The AUTOSTART record indicates that Expedite Base for Windows started the Information 
Exchange session automatically. The 00000 return code in the RETURN record indicates that the 
session started successfully.

The RECEIVED record and the 00000 return code in the RETURN record following it indicate that 
Expedite Base for Windows received one file in order.exe in the mycode directory. Because the 
file has a CDH, Expedite Base for Windows uses the original file name of order.exe instead of 
code.fil and places the file in the specified directory, mycode.

The second RECEIVE command is not followed by any RECEIVED records. Instead, it is followed 
by a RETURN record with a 00000 return code. This means that the communication completed 
successfully, but there were no system error messages to receive.

The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically. The 00000 return code in the RETURN record indicates that the session 
ended successfully. The 00000 return code in the SESSIONEND record indicates that all the 
commands completed successfully.

CAUTION: PC viruses are commonly passed from one PC to another when you 
exchange executable files (.exe, .com) and then run them. You should exercise caution 
when receiving files using original file name so you can protect your PC from viruses. 
If you use the origfile(y) parameter, be sure you know what file you are receiving and 
that it comes from a trusted source.
98



© Copyright GXS, Inc. 1998, 2005
Chapter 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sending and receiving EDI data

You can use Expedite Base for Windows to send and receive data formatted for electronic data 
interchange (EDI). Expedite Base for Windows provides a single set of commands for all EDI 
data transmission—SENDEDI and RECEIVEEDI. The following sections explain how these 
commands work.

For information on sending and receiving non-EDI data, see Chapter 6, “Sending and receiving 
files.’’ 

For information on sending and receiving compressed EDI data, see Appendix E, “Using data 
compression.’’

Understanding how the network sends EDI data 
Chapter 6, “Sending and receiving files,’’ describes how Information Exchange uses a two-part 
address to deliver mail (non-EDI data) to a trading partner’s mailbox. The address consists of the 
account and user ID. The same chapter also discusses how the destination address is specified on 
the SEND command.

Information Exchange handles EDI data differently. When you send an EDI file, the data in the 
file contains the destination address.

■ In X12 data, the destination is stored in the ISA segment.
■ In UCS data, the destination is stored in the BG segment.
■ In EDIFACT data, the destination is stored in the UNB segment.
■ In UN/TDI data, the destination is stored in the STX segment.

Information Exchange must have the account and user ID of the destination mailbox in order to 
deliver the file. However, EDI standards allow you to specify addresses using different conven-
tions. For example, you can specify a Dun and Bradstreet (DUNS) number for the address. You 
can also use phone numbers. Expedite Base for Windows and Information Exchange allow you 
to continue to use these kinds of addressing conventions. However, information must be provided 
so that the various addresses can be converted to the account and user ID that Information 
Exchange needs to deliver the file. See “Resolving EDI destinations” on page 101 for additional 
information.
99



Expedite Base for Windows Programming Guide

Understanding how Expedite Base for Windows sends EDI data
Understanding how Expedite Base for Windows sends EDI data 
The SENDEDI command is used to send data formatted in X12, UCS, EDIFACT, and UN/TDI to 
Information Exchange. You do not need to specify the destination address on the SENDEDI 
command because Expedite Base for Windows can get the address from the data. For infor-
mation about the structure of the SENDEDI command, see Chapter 9, “Using Expedite Base for 
Windows message commands.’’

A group of EDI transactions with a single destination address is an EDI envelope. An EDI 
envelope consists of the EDI header, the data in the EDI transactions, and the EDI trailer. The 
EDI header contains the destination address for the data within the envelope. The format of the 
headers, data, and trailers differs depending on what type of EDI data is sent. See “Using EDI 
envelopes” below for more details about the different types of EDI envelopes.

Expedite Base for Windows can transmit multiple EDI envelopes with different addresses 
contained in a single file with a single SENDEDI command. It can also transmit multiple types of 
EDI data from a single file. You can combine X12, UCS, EDIFACT, and UN/TDI data in one file 
and transmit it to multiple Information Exchange destinations with one SENDEDI command.

Using the SENDEDI command, you can send data to Information Exchange without specifying an 
Information Exchange destination as part of the command. SENDEDI can match EDI destinations 
contained in the EDI data to Information Exchange destinations.

SENDEDI determines where to send an EDI envelope by examining the contents of the envelope. 
The envelope definition (the type of EDI data you are transmitting) determines the location of the 
destination within an EDI envelope. Expedite Base for Windows must read the envelope header 
to extract the destination address. Expedite Base for Windows converts that address to a valid 
Information Exchange account and user ID mailbox address. The section below discusses the 
EDI envelopes. “Resolving EDI destinations” on page 101 explains how Expedite Base for 
Windows converts the EDI address.

Using EDI envelopes 
When you send EDI transactions, you can group the EDI transactions for a single destination 
within a single envelope. The EDI envelope definitions for each EDI data type are described 
below:

This EDI data type: Uses this EDI envelope definition:

X12  Data between and including the ISA and IEA segments.

EDIFACT Data between and including the UNA (or UNB) and UNZ segments.

UN/TDI Data between and including the SCH (or STX) and END segments.

UCS  Data between and including the BG and EG segments.
100



Chapter 7. Sending and receiving EDI data

Resolving EDI destinations
The type of EDI data you are transmitting determines the location of the destination within an 
EDI header. Expedite Base for Windows locates the EDI destination as follows: 

Resolving EDI destinations 
Before sending EDI data, you need to understand how EDI destinations are converted to Infor-
mation Exchange addresses.

Each Information Exchange mailbox is identified by a unique address. When you send data to 
Information Exchange, you must provide information so Information Exchange can determine 
the correct destination mailbox address. Information Exchange and the Expedite products under-
stand three different forms of addresses:

■ Account and user ID

Information Exchange must have the account and user ID in order to deliver the data to the 
proper mailbox.

■ Alias table and alias name

Information Exchange uses tables to convert the alias table and alias name combination that 
you provide to the corresponding account and user ID.

■ List

When you send to a list, you should have defined a list of accounts and user IDs, or alias 
tables and alias names.

The destination address in the EDI data can be specified in terms of an Information Exchange 
account and user ID. This is the simplest scenario, because Expedite Base for Windows does not 
have to convert the address. “Bypassing tables” on page 102 discusses this scenario and provides 
examples.

However, EDI standards define sets of rules for specifying destination addresses. When you send 
EDI data to Information Exchange using a destination address other than an Information 
Exchange account and user ID, you must provide additional information so that Expedite Base 
for Windows and Information Exchange can convert an EDI address to an address that Infor-

This EDI data type Contains the EDI destination in this segment:

X12 ISA. SENDEDI takes the actual EDI destination from the interchange 
receiver ID element (ISA08). It takes the EDI qualifier from the inter-
change ID qualifier element (ISA07).

EDIFACT UNB. SENDEDI takes the destination from data element 0010 in 
composite data element S003 (Interchange Recipient). It takes the EDI 
qualifier from the data element 0007 in composite data element S003 
(Interchange recipient).

UN/TDI STX. SENDEDI takes the destination from the first subelement of the 
UNTO element (the recipient code address). If it does not find the 
recipient code, it uses the second subelement of the UNTO element 
(the recipient clear address) as the actual Information Exchange 
account and user ID.

UCS BG. SENDEDI takes the destination from the application receiver’s 
code (BG04) element.
101



Expedite Base for Windows Programming Guide

Resolving EDI destinations
mation Exchange understands. You provide this information using several tables. An overview of 
these tables is provided in the following flowchart. A discussion of how these tables work is 
provided in the following sections. 

This flowchart illustrates how the SENDEDI command locates EDI destinations in most cases. 

SENDEDI can use three tables to determine the Information Exchange destination from the 
receiver ID specified in the EDI data: qualifier, destination, and alias tables.

Bypassing tables
If you need to send only EDIFACT, X12, or UN/TDI data to an Information Exchange desti-
nation, and you specify an Information Exchange destination in the EDI header, you can bypass 
the tables and send the EDI data directly to an Information Exchange destination.

To send EDIFACT or X12 data to an Information Exchange destination contained within the EDI 
data, follow these steps:

1. Place ZZ in the receiver ID qualifier of the EDI header. 

2. Use the Information Exchange account and user ID as the actual EDI destination. For X12 
data, you should separate the account and user ID by at least one blank. Otherwise, Expedite 
Base for Windows will use the first 7 characters as the account and the last 8 characters as 
the user ID. For EDIFACT data, you must separate the account and user ID by a period (.), 
slash (/), or blank.

3. Use the SENDEDI command to send the file containing your EDI data.

NOTE: When you use a ZZ qualifier, Expedite Base for Windows tries to 
resolve the destination by searching the tables. When it does not locate the 
destination in the tables, or the tables don’t exist, Expedite Base for Windows 
sends the data to the specified Information Exchange account and user ID. If you 
do not want Expedite Base for Windows to refer to the tables first, you can use a 
blank qualifier instead of a ZZ qualifier in the EDI header for X12 data. For 
EDIFACT data, a blank qualifier is treated the same way as any other qualifier 
and does not result in the tables being bypassed.

EDI envelope

Qualifier Table

Destination Table

Alias Table

Information Exchange mailbox
102



Chapter 7. Sending and receiving EDI data

Resolving EDI destinations
To send UN/TDI data to an Information Exchange destination contained within EDI data, follow 
these steps:

1. Do not specify the recipient code (UNTO:1).

2. Place the Information Exchange account and user ID in the recipient clear address 
(UNTO:2). You must separate the account and user ID by a period (.), slash (/), or blank.

3. Use the SENDEDI command to send the file containing your EDI data.

The following example shows how Expedite Base for Windows sends an EDIFACT file to a 
trading partner with an EDI destination specified as an Information Exchange account and user 
ID of ieacct2, ieuser4.

You can use intersystem addressing when using the SENDEDI command to transmit EDIFACT or 
UN/TDI data. To do this, place an Information Exchange address in the EDIFACT or UN/TDI 
header, specifying the appropriate identifying information in the following order:

■ System ID (not required if the sender and receiver are using the same system)

■ Account ID

■ User ID

All of the IDs must be separated by one of the following:

■ Period (.)

■ Slash (/)

■ One or more spaces

For EDIFACT data, SENDEDI splits the receiver code, which is data element 0010 in composite 
data element S003 (Interchange Recipient), into the system, account, and user ID.

For UN/TDI data, SENDEDI splits the recipient clear code (UNTO:2) into the system, account, 
and user ID.

The following example shows how Expedite Base for Windows sends an EDIFACT file to a 
trading partner with an EDI destination specified as an Information Exchange account and user 
ID of ieacct2 ieuser4.

basein.msg

Expedite Base for Windows sends the data in this example to account ieacct2 and user ID 
ieuser4.

SENDEDI   FILEID(EDIFILE);

EDIFILE

UNB....IEACCT2....IEUSER4...ZZ..

basein.msg
103



Expedite Base for Windows Programming Guide

Resolving EDI destinations
If you are sending UCS data, you cannot bypass the use of tables. You must have one of the 
following in order to send UCS data:

■ A TTABLE01.TBL file that specifies an Information Exchange account and user ID for the 
UCS destination address.

■ A QUALTBL.TBL file that identifies an Information Exchange alias table. The alias table 
must have an entry with the UCS destination address and the associated Information 
Exchange account and user ID.

■ A QUALTBL.TBL file that identifies a destination table to be used to translate the UCS 
destination address to an Information Exchange account and user ID.

When SENDEDI cannot find a destination or qualifier table, SENDEDI determines the Information 
Exchange destination for each EDI data type as follows:

If the EDI data is: SENDEDI determines Information Exchange destination as follows:

X12 and the qualifier is ZZ 
or blank

The SENDEDI command splits the receiver ID into an account 
and a user ID. Expedite Base for Windows will look for a blank 
character as the separator between account and user ID. 
Otherwise, it uses the first 7 characters as the account and the 
last 8 characters as the user ID.

X12 and the qualifier is not 
ZZ or blank

This is an error, and Expedite Base for Windows does not send 
the data.

EDIFACT and the 
qualifier, which is the data 
element 0007 in the 
composite data element 
S003 (Interchange 
Recipient), is ZZ or blank

SENDEDI splits the receiver code, which is data element 0010 in 
composite data element S003 (Interchange Recipient), into the 
system, account, and user ID. The system, account, and user ID 
are separated by a period (.), slash (/), or by one or more blank 
spaces. The system ID is optional if the sender and receiver are 
on the same system.

EDIFACT and the 
qualifier, which is the data 
element 0007 in the 
composite data element 
S003 (Interchange 
Recipient), is not ZZ or 
blank

This is an error, and Expedite Base for Windows does not send 
the data.

UN/TDI and the recipient 
code (UNTO:1) is not 
specified

SENDEDI splits the recipient clear code (UNTO:2) into a system, 
account, and user ID. The system, account, and user ID are 
separated by a period (.), slash (/), or by one or more blank 
spaces. The system ID is optional if the sender and receiver are 
on the same system.

UN/TDI and UNTO:1 was 
specified

This is an error, and Expedite Base for Windows does not send 
the data.

UCS This is an error, and Expedite Base for Windows does not send 
the data.
104



Chapter 7. Sending and receiving EDI data

Resolving EDI destinations
Using EDI destination tables 
If you do not specify Information Exchange destinations in the EDI header, you must first create 
an EDI destination table so that the EDI destination can be converted to an Information Exchange 
address.

Think of an EDI destination table as a list of EDI destinations paired with Information Exchange 
destinations. “Understanding the EDI destination table entry format” on page 113 provides 
details about how to build the EDI destination tables. The SENDEDI command resolves destina-
tions by searching for an EDI destination and then using the corresponding Information 
Exchange destination as the actual address for an envelope.

EDI destination tables have the following default naming convention:

To send EDI data to a destination you define in an EDI destination table, follow these steps:

1. Build an EDI destination table containing your EDI destination and the corresponding Infor-
mation Exchange destination. This table has the file name TTABLExx.TBL, where xx is the 
receiver ID qualifier in the EDI header.

2. Use the SENDEDI command to send the file containing your EDI destination.

The following example shows the tables Expedite Base for Windows uses to send an X12 file to 
a trading partner with an EDI destination of testdun1 and a qualifier of 01. This example shows 
how to use an EDI destination table without a qualifier table. “Using EDI qualifier tables” on 
page 106 describes how to use a qualifier table.

 basein.msg

This EDI data type: Defaults to this EDI destination table:

X12 TTABLExx.TBL, where xx is the 2-character ID qualifier 

EDIFACT TTABLExx.TBL, where xx is the first 2 characters of the ID qualifier

UN/TDI IEUNTDI.TBL

UCS TTABLE01.TBL

SENDEDI FILEID(EDIFILE);

EDIFILE

ISA....01....TESTDUN1..

EDIDEST(TESTDUN1)  ACCOUNT(IEACCT1)  USERID(IEUSER1);

TTABLE01.TBL

EDIDEST(TESTDUN2)  ACCOUNT(IEACCT2)  USERID(IEUSER3);
EDIDEST(TESTDUN3)   LISTNAME(LIST01);
105



Expedite Base for Windows Programming Guide

Resolving EDI destinations
In this example, the receiver ID is testdun1 and the receiver ID qualifier is 01. An EDI qualifier 
table is not used. Expedite Base for Windows searches the EDI destination table TTABLE01.TBL 
for the receiver ID testdun1 and converts the address to Information Exchange account ieacct1 
and Information Exchange user ID ieuser1. The table TTABLE01.TBL is the default destination 
table for X12 data using a 01 receiver ID qualifier.

Using EDI qualifier tables 
“Using EDI destination tables” on page 105 describes how Expedite Base for Windows EDI 
destination tables are used to convert from an EDI destination to an Information Exchange 
address destination.

EDI qualifier tables tell Expedite Base for Windows which EDI destination table to use for this 
conversion. If you do not provide an EDI qualifier table, Expedite Base for Windows uses the 
default naming convention specified in “Using EDI destination tables” on page 105 to determine 
which EDI destination table to use. If you find that the default naming convention is unsatis-
factory, you can override the default destination table file names using the EDI qualifier table. 
The EDI qualifier table specifies a list of EDI destination tables that should be used for specific 
types of EDI data. See “Creating tables for destination resolution” on page 112 for details about 
how to build an EDI qualifier table. 

 basein.msg

In this example, X12 data is sent to receiver ID testdun1 with receiver ID qualifier 01. An EDI 
qualifier table is used. Expedite Base for Windows searches the EDI qualifier table for a 
DATATYPE of x and QUALIFIER 01. This entry indicates that TTABLEAA.TBL should be used to 
convert the EDI destination to a proper Information Exchange address. Expedite Base for 
Windows proceeds to search TTABLEAA.TBL for the receiver ID testdun1 and converts the 
address in the Information Exchange account ieacct1 to Information Exchange user ID ieuser1.

If the EDI destination cannot be resolved using the local TTABLExx.TBL, the EDI destination is 
passed to Information Exchange for resolution via the alias table specified in QUALTBL.TBL.

SENDEDI FILEID(EDIFILE);

EDIFILE
ISA....01....TESTDUN1..

DATATYPE(X)

QUALTBL.TBL

DATATYPE(X)
DATATYPE(E)

basein.msg

QUALIFIER(02)
QUALIFIER(01) TTABLE(TTABLEAA.TBL);

TTABLE(TTABLEAA.TBL);

ALIAS(GX01);
ALIAS(GX02);
ALIAS(GX01);QUALIFIER(01)

EDIDEST(TESTDUN1)
EDIDEST(TESTDUN2)
EDIDEST(EDILIST)

ACCOUNT(IEACCT2)
ACCOUNT(IEACCT1) USERID(IEUSER1);

USERID(IEUSER3);
LISTNAME(LIST01);

TTABLEAA.TBL
106



Chapter 7. Sending and receiving EDI data

Resolving EDI destinations
Using centralized Information Exchange alias tables 
You may find it time consuming to maintain EDI destination tables in multiple locations. With 
the SENDEDI command, you can use centralized Information Exchange alias tables. These 
permanent tables reside within Information Exchange and convert EDI destinations into Infor-
mation Exchange destinations. You can make them available to all Information Exchange users 
(global alias tables), members of a particular account (organization alias tables), or a single user 
(private alias tables). The EDI qualifier table and the EDI destination table determine which, if 
any, of these alias tables Expedite Base for Windows should use.

You can create and maintain alias tables in two ways:

■ Using Information Exchange Administration Services (see the Information Exchange 
Administration Services User’s Guide).

■ Using the DEFINEALIAS command (see “DEFINEALIAS command” on page 188).

To send EDI data to a destination defined in an Information Exchange centralized alias table, 
follow these steps:

1. Add the target EDI destination to an Information Exchange centralized alias table.

2. Build an EDI qualifier table that contains the name of the Information Exchange centralized 
alias table and specifies the EDI data type.

If you use a centralized alias table, make sure Expedite Base for Windows cannot resolve 
your target EDI destination locally on the PC.

3. Use the SENDEDI command to send the file containing your EDI data.

The following example shows the tables Expedite Base for Windows uses to send an X12 file to 
a trading partner with an EDI destination of testsca1 and a qualifier of 02. This particular 
example does not include an EDI destination table. 

basein.msg

NOTE: Expedite Base for Windows contains a sample EDI qualifier table. This 
table defines standard centralized alias tables for all types of EDI data. In some 
Information Exchange installations, these standard, centralized alias tables already 
exist, and you can add your EDI destinations to these tables to resolve your 
destinations.

SENDEDI FILEID(EDIFILE);

EDIFILE
ISA.....02...TESTCA1...

DATATYPE(X)

QUALTBL.TBL

DATATYPE(X)
DATATYPE(E)

basein.msg

QUALIFIER(02)
QUALIFIER(01) TTABLE(TTABLE01.TBL):

TTABLE(TTABLE01.TBL);

ALIAS(GX01);
ALIAS(GX02);
ALIAS(GX01);QUALIFIER(01)
107



Expedite Base for Windows Programming Guide

Resolving EDI destinations
Expedite Base for Windows sends the data in this example to alias name testsca1 in Information 
Exchange alias table GX02. Information Exchange alias table GX02 is used to resolve the alias to 
an Information Exchange account and user ID.

Using Information Exchange distribution lists 
To send EDI data to an Information Exchange list, follow these steps:

1. Define the Information Exchange list. You can define a list using either Expedite Base for 
Windows or Information Exchange Administration Services.

2. Build an EDI destination table containing your EDI destination and the corresponding Infor-
mation Exchange list name.

3. If you are not using a default EDI destination table file name, build an EDI qualifier table 
that contains the name of your EDI destination table and the type of EDI data it references.

4. Use the SENDEDI command to send the file containing your EDI data.

The following example shows the tables Expedite Base for Windows uses to send an EDIFACT 
file to an Information Exchange distribution list called list01. 

basein.msg

Expedite Base for Windows sends the data in this example to the Information Exchange list name 
list01.

To create a temporary list that only exists during your current Information Exchange session or a 
permanent list in Information Exchange, use the LIST command. See “LIST command” on page 
197.

You can also use Information Exchange Administration Services to create a permanent list. For 
more information, see the Information Exchange Administration Services User’s Guide.

NOTE: If you use the default name for your EDI destination table, you do not 
have to build an EDI qualifier table.

SENDEDI FILEID(EDIFILE);

EDIFILE
UNB....TESTDUN3... 01...

DATATYPE(X)

QUALTBL.TBL

DATATYPE(X)
DATATYPE(E)

basein.msg

QUALIFIER(02)
QUALIFIER(01) TTABLE(TTABLE01.TBL);

TTABLE(TTABLE01.TBL);

ALIAS(GX01);
ALIAS(GX02);
ALIAS(GX01);QUALIFIER(01)

EDIDEST(TESTDUN1)
EDIDEST(TESTDUN2)
EDIDEST(EDILIST)

ACCOUNT(IEACCT2)
ACCOUNT(IEACCT1) USERID(IEUSER1);

USERID(IEUSER3);
LISTNAME(LIST01);

TTABLE01
108



Chapter 7. Sending and receiving EDI data

Specifying Information Exchange control fields
Specifying Information Exchange control fields 
You can specify Information Exchange control fields by using parameters on the SENDEDI 
command. These control fields allow you to assign information, which can be used by you and 
your trading partner, to the files that you send. Following are the Information Exchange control 
fields you can use:

■ Message name (MSGNAME) - an alphanumeric identifier for your file.

■ Message sequence number (MSGSEQNO) - a numeric identifier for your file.

■ User class (CLASS) - an alphanumeric identifier for your file. The user class can be used by 
your trading partner when receiving the file.

Providing a message name (MSGNAME) 
When you use the SENDEDI command and provide a MSGNAME parameter, SENDEDI uses this 
value for Information Exchange MSGNAME. If you do not provide a MSGNAME parameter, the 
SENDEDI command generates Information Exchange MSGNAME based on the EDI data type. The 
following table describes how the SENDEDI command generates the MSGNAME.

Providing a message sequence number (MSGSEQNO) 
When you use the SENDEDI command and provide a MSGSEQNO parameter, SENDEDI uses this 
value for the Information Exchange message sequence number. If you do not provide the 
MSGSEQNO parameter, the SENDEDI command generates an Information Exchange MSGSEQNO in 
the following manner for all EDI data types.

This EDI data type: Generates this MSGNAME:

EDIFACT data Expedite Base for Windows takes the MSGNAME from the data 
element 0020 (Interchange Control Reference) of the EDI data. If 
the element exceeds 8 bytes in length, Expedite Base for Windows 
uses the first 8 bytes. If the element is fewer than 8 bytes in length, 
Expedite Base for Windows places it in the MSGNAME field, left-
justified and padded with blanks.

UN/TDI data Expedite Base for Windows takes the MSGNAME from the sender’s 
reference field (SNRF) of the EDI data. If the SNRF exceeds 8 bytes 
in length, Expedite Base for Windows uses the first 8 bytes. If the 
SNRF is fewer than 8 bytes in length, Expedite Base for Windows 
places it in the MSGNAME field, left-justified and padded with blanks.

X12 data Expedite Base for Windows takes the MSGNAME from the last 8 
bytes of the interchange control number of the X12 data.

UCS data Expedite Base for Windows takes the MSGNAME from the inter-
change control number. Because the UCS interchange control 
number has a maximum length of 5 bytes, Expedite Base for 
Windows places the interchange control number in the MSGNAME 
field, left-justified and padded with blanks.
109



Expedite Base for Windows Programming Guide

Specifying Information Exchange control fields
The SENDEDI command counts each EDI envelope it transmits from a single data file. SENDEDI 
formats MSGSEQNO as a series of numeric characters ranging from 00001 to 99999. It assigns and 
places the count of each EDI envelope in the MSGSEQNO of the corresponding Information 
Exchange messages. For example, three EDI envelopes SENDEDI sent from a single file would 
have the following MSGSEQNO values:

■ 00001 for the first EDI envelope in the file
■ 00002 for the second EDI envelope in the file
■ 00003 for the last EDI envelope in the file

When the MSGSEQNO reaches 99999, it automatically resets to 00001. Also, the MSGSEQNO 
counter resets to 00001 each time you use the SENDEDI command for a new file of EDI 
envelopes.

Providing a user class (CLASS) 
If you do not provide a CLASS parameter on the SENDEDI command, SENDEDI generates a 
parameter value based on the EDI data type.

EDIFACT and UN/TDI data 
For EDIFACT and UN/TDI data, Expedite Base for Windows takes the CLASS from the appli-
cation reference field (APRF) of the EDI data. The APRF field is in data element 0026 in the 
UNB for EDIFACT messages and in the APRF element of the STX for UN/TDI messages. If the 
APRF exceeds 8 bytes in length, Expedite Base for Windows uses the first 8 bytes. If the APRF 
is fewer than 8 bytes in length, Expedite Base for Windows places the APRF in the CLASS field, 
left-justified and padded with blanks. If the APRF is not present, Expedite Base for Windows sets 
the CLASS as follows:

X12 and UCS data 
For X12 and UCS data if you do not specify the CLASS parameter, Expedite Base for Windows 
sets the CLASS as follows:

Inserting blanks following EDI segments
If you insert blanks at the end of EDI segments when preparing EDI information, Expedite Base 
for Windows does not consider the blanks part of the EDI data. The SENDEDI command accepts 
EDI data with blanks after the segment terminators, but it removes these blanks before trans-
mitting the data to Information Exchange.

This EDI data type: Defaults to this class:

EDIFACT #EE

UN/TDI #EU

This EDI data type: Defaults to this class:

X12 #E2

UCS #EC
110



Chapter 7. Sending and receiving EDI data

Receiving EDI data
Using SENDEDI response records
The SENT record keeps track of the EDI envelopes SENDEDI sent. For a description of the format 
of this record, see “SENT record” on page 258.

The NOTSENT record provides a record of the EDI envelopes not sent by the SENDEDI command 
due to a destination verification failure. NOTSENT records are only given when VERIFY (c or g) is 
specified. For a description of the format of this record, see “NOTSENT record” on page 249.

Receiving EDI data
You use the RECEIVEEDI command to receive EDI data from Information Exchange. You can 
receive multiple EDI envelopes containing different types of data with a single RECEIVEEDI 
command.

The RECEIVEEDI command is similar to the RECEIVE command, but it includes the ability to 
reformat received data based on EDI segment delimiters. The EDIOPT parameter on the 
RECEIVEEDI command controls this function. For more information on the format of this 
command, see “RECEIVEEDI command” on page 215.

Although it is recommended that you receive EDI data using the RECEIVEEDI command, it is also 
possible to receive and process EDI data using the RECEIVE command as long as your trading 
partner sends you EDI data with a CDH and you use the AUTOEDI parameter of the RECEIVE 
command. This way, the RECEIVE command can recognize the EDI format of the data and format 
it accordingly. See “RECEIVE command” on page 207 for additional information about the 
RECEIVE command. Expedite Base for Windows always prepares a CDH when sending data. Any 
Information Exchange interface before Release 3.0 does not support the CDH.

If the system sending the EDI data does not support the CDH, there is no way to guarantee that 
the data you receive is EDI. However, you can make arrangements with your trading partner to 
help ensure that you receive EDI data. For example, you and your trading partner can agree that 
all EDI data is sent with a user class of edidata. All non-EDI data must have a different user 
class. That way, your RECEIVEEDI command can receive from user class edidata and the data is 
EDI. The following example shows a RECEIVEEDI command using the CLASS parameter to 
receive all files with the class edidata from the mailbox.

       receiveedi fileid(edi.fil) class(edidata);.

If the person sending you data uses the default user classes of the SENDEDI command, you can use 
the wildcard receive feature of Information Exchange to simplify receipt. For example, by speci-
fying #E? as the user class on the RECEIVEEDI command, you can ask Information Exchange to 
return only files that have a user class beginning with #E. This includes all files sent with the 
default EDI user classes.

NOTE: You can use the SENT records in the message response file 
(baseout.msg) to determine which EDI envelopes have been sent when the 
SENDEDI command does not complete successfully, and you can use the 
NOTSENT records to determine which envelopes were not sent.

NOTE: This method does not guarantee that the data in the file is EDI. For 
example, your trading partner might mistakenly send a non-EDI file to your 
mailbox with a user class of edidata. This method only improves the chances 
that the data is really EDI.
111



Expedite Base for Windows Programming Guide

Creating tables for destination resolution
If your trading partner uses a version of an Expedite product that supports the CDH, there is a 
better method of ensuring the data you receive is EDI. You can use the EDIONLY parameter on the 
RECEIVEEDI command to receive the data marked in the CDH as EDI data. If your trading partner 
sent the data using the SENDEDI command, then the DFORMAT field in the CDH indicates that the 
file is EDI.

The following example shows a RECEIVEEDI command using the EDIONLY parameter to receive 
all the files in the mailbox that are marked in the CDH as EDI data:

receiveedi fileid(edidata) edionly(y);

If the CDH indicates the data is not EDI, the file will not be received.

This method is especially useful if you intend to use a translator to translate from EDI standard 
format to proprietary format. Some translators run into problems if they try to translate data that 
is not really in an EDI format. The EDIONLY parameter on the RECEIVEEDI command can help 
avoid such problems.

If there is no CDH, RECEIVEEDI attempts to process the files as EDI data. If this is not possible, 
the program writes the data without reformatting.

Creating tables for destination resolution 
The following sections provide information on the format of the EDI qualifier table and EDI 
destination table. When you are sending data, these tables enable Expedite Base for Windows to 
resolve destinations. Use these formats to create your tables.

Understanding the EDI qualifier table entry format 
The file qualtbl.tbl contains the EDI qualifier table. Each entry in this table indicates an EDI 
destination table, a centralized alias table, or both, for a given EDI qualifier or EDI data type. The 
format for an EDI qualifier table entry is:

datatype(data type) qualifier(EDI qualifier) ttable(ttable ID) 
alias(alias)

Parameters
datatype

Indicates the EDI data type. Use one of the following values:

NOTE: The SENDEDI command places a single EDI envelope in an Information 
Exchange file. The RECEIVEEDI command expects each EDI envelope to be 
contained in a separate Information Exchange file. If you put multiple EDI 
envelopes in a single file and send them using the SEND (not the SENDEDI) 
command, the entire file will be sent to the Information Exchange account and 
user ID specified on the SEND command regardless of the destinations specified 
in the EDI envelopes within the file.

blank For all EDI data types. This entry matches any supported EDI data type. This is 
the default.

x For X12 data.

c For UCS data.

e For EDIFACT data.
112



Chapter 7. Sending and receiving EDI data

Creating tables for destination resolution
qualifier
Indicates the EDI qualifier. If the qualifier parameter is blank, this entry matches any EDI 
qualifier. Use 1 to 4 alphanumeric characters. The default is blank.

ttable
Indicates the name of the EDI destination table. If you specify the TTABLE parameter, 
SENDEDI uses that table to try to resolve the Information Exchange destination. If you do not 
specify a destination table, SENDEDI does not use a table to match EDI data and resolve the 
destination. Use a standard Expedite Base for Windows file name of 1 to 12 alphanumeric 
characters.

alias
Indicates the name of the centralized alias table. If you specify this parameter and SENDEDI 
does not find the destination in the EDI destination table, SENDEDI uses this alias table with 
the EDI receiver ID as the alias name.

The following is an example of a qualifier table entry.

# Destination table for southeast area trading partners.
datatype(x) qualifier(01) ttable(TTABLE01.TBL) alias(gx01);

Understanding the EDI destination table entry format 
Use the TTABLE parameter in the EDI qualifier to specify the name of your EDI destination table. 
Each entry in this table indicates the Information Exchange destination associated with a given 
EDI receiver ID. The format of an entry is:

edidest(EDI destination)     alias(alias) aliasname(alias name);
or

sysid(system ID) account(account) userid(user ID);
or

account(account) userid(user ID);
or

listname(list name);

u For UN/TDI data.

blank No centralized alias table. This is the default.

Gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

Oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

Pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can include comments in the qualifier table. See “Understanding 
command syntax” on page 32 for comment rules.
113



Expedite Base for Windows Programming Guide

Creating tables for destination resolution
Parameters
edidest

Indicates the EDI receiver ID. If this parameter matches the receiver ID from the EDI data, 
Expedite Base for Windows sends the message to the Information Exchange destination 
using the parameters you select. Use 1 to 35 alphanumeric characters.

alias
Indicates the alias table type and table name.

aliasname
Indicates an alias name defined in the alias table. Use 1 to 16 alphanumeric characters.

sysid
Indicates the system ID of a single-destination user ID. You need this only if the account ID 
and user ID you specify reside on another Information Exchange system. Use this parameter 
only with the ACCOUNT and USERID parameters. Use 1 to 3 alphanumeric characters.

account
Indicates the Information Exchange account name of a single-destination user ID. Use 1 to 8 
alphanumeric characters.

userid
Indicates the Information Exchange destination user ID. Use 1 to 8 alphanumeric characters.

listname
Indicates the name of a previously defined list of account and user IDs. Use 1 to 8 alphanu-
meric characters.

The following is an example of an EDI destination table entry.

# IE address for XYZ company in Baltimore.
edidest(testdun1) account(ieacct1) userid(ieuser1);

Recovery levels 
The default recovery level for a session with Information Exchange is checkpoint. This is usually 
the best way to exchange data when using a dial line or when transferring a large number of files 
or a large amount of data.

Checkpoint-level recovery ensures that if the line is disconnected or noisy, Expedite Base for 
Windows can pick up the data transfer at the last checkpoint rather than start the transfer over 
from the beginning.

blank No alias table. This is the default.

Gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

Oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

Pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can include comments in the qualifier table. See “Understanding 
command syntax” on page 32 for comment rules.
114



Chapter 7. Sending and receiving EDI data

Using checkpoint-level, file-level, and user-initiated recovery
When using a leased line, you can select session-level recovery, because it is unlikely the line 
will go down during the data transfer. When you use session-level recovery, there is less 
processing required to recover after a failed session, as it is an all-or-nothing data transfer 
method.

When using a dial line, you can also select session-level recovery if you are transmitting only a 
small amount of data. If the line is disconnected, simply start the session over from the 
beginning.

Using session-level recovery, however, has its disadvantages. With checkpoint-level recovery, 
Information Exchange commits the data sent or received when a checkpoint takes place during 
the session. The commit processing is done in short intervals throughout the session. For a 
session-level recovery session, this processing is all done at the end of the session. If the commu-
nication line gets disconnected, Expedite Base for Windows must start from the beginning the 
next time a connection is made.

Using checkpoint-level, file-level, and user-initiated recovery 
The most important job of your application interface is processing the Expedite Base for 
Windows response file. 

To work with Expedite Base for Windows, you need to understand how it recovers from an error 
during an Information Exchange session.

Checkpoint-level, file-level, and user-initiated recovery are Information Exchange methods that 
Expedite Base for Windows can use to recover data at specific checkpoints. When you use 
session-level recovery and an error occurs (see “Using session-level recovery” on page 130), 
Expedite Base for Windows must retransmit all data for the session. If you are sending large 
amounts of data, retransmission can take several hours. But when you select checkpoint-level, 
file-level, or user-initiated recovery, Expedite Base for Windows can recover data more 
efficiently.
115



Expedite Base for Windows Programming Guide

Using checkpoint-level, file-level, and user-initiated recovery
The following table shows when Expedite Base for Windows takes checkpoints for each of these 
recovery methods: 

Checkpoint-level recovery File-level recovery User-initiated recovery 

• after sending the number 
of bytes you specify in 
the COMMITDATA 
parameter of the 
TRANSMIT command 
(default is 141000 bytes)

• at the end of each SEND, 
SENDEDI, or PUTMEMBER 
command, if the next 
command is not a SEND, 
SENDEDI, or PUTMEMBER 
command

• while receiving data for 
a RECEIVE or 
RECEIVEEDI command, if 
the file was sent with 
checkpoints

• at the end of each 
RECEIVE or RECEIVEEDI 
command

• after each file sent as a 
result of a SEND, 
SENDEDI, or PUTMEMBER 
command 

• after each file is received

• while receiving data for 
a RECEIVE or 
RECEIVEEDI command, if 
the file was sent with 
checkpoints

• at the end of each 
RECEIVE or RECEIVEEDI 
command

• after each COMMIT 
command, unless there 
is nothing to commit

• at the end of each 
session, even if you have 
not specified a COMMIT 
command

• while receiving data for 
a RECEIVE or 
RECEIVEEDI command, if 
the file was sent with 
checkpoints

• at the end of each 
RECEIVE or RECEIVEEDI 
command
116



Chapter 7. Sending and receiving EDI data

Using checkpoint-level, file-level, and user-initiated recovery
Checkpoint-level recovery is the default in Expedite Base for Windows.

To request one of the other recovery methods, use the RECOVERY parameter on the TRANSMIT 
command with one of the following values:

The processes for using checkpoint-level, file-level, and user-initiated recovery are very similar. 
Expedite Base for Windows uses the same work files for these recovery methods. Considerations 
for restarting after an error and resetting the Expedite Base for Windows session, described later 
in this chapter, also apply to all three recovery methods.

Use this value: For this kind of recovery:

s Session-level recovery

f File-level recovery

u User-initiated recovery

CAUTION:  If you start an Information Exchange session using checkpoint-level 
recovery, file-level recovery, or user-initiated recovery while another Information 
Exchange session with the same account and user ID is running, Information Exchange 
ends the first session and continues the second session. The results in the first session 
depend on whether a checkpoint ended successfully:

■ If a checkpoint ended successfully, Information Exchange delivers 
any data sent prior to the checkpoint and deletes any data from the 
mailbox that was received prior to the checkpoint.

■ If a checkpoint did not end successfully, Information Exchange 
does not deliver any data and does not delete any received data 
from the mailbox. This means that data received in the first session 
may be received again in error. 

In either case, you may get an error when you restart the first session. 
You should not run multiple sessions for the same account and user ID 
from different machines.
117



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Understanding post-session processing for checkpoint-level, file-level, 
and user-initiated recovery 

The following sections describe what to do when a session ends in error. Post-session processing 
activities include:

■ Restarting a session
■ Resetting a session
■ Checking the SENT, NOTSENT, and RECEIVED response records
■ Checking return codes

Restarting a session 
It is important that your application processes the responses in the response file correctly. 
Therefore, you need to understand the difference between session restart and session reset.

You initiate a session restart when an Information Exchange session ends in error and you want 
Expedite Base for Windows to resume the session at the last checkpoint. Before you restart a 
session, correct any problems that caused the previous session to end in error. Do not alter the 
basein.msg command file, the baseout.msg response file, or the session.fil session file. You can 
correct a syntax error in the command file to allow the session to continue, but do not add or 
delete lines from it.

If the session completes abnormally but you have return records for all of your commands with 0 
return codes, then restart the session to allow it to complete normally. Do not reset the session, or 
lost or duplicate data may occur.

If you have altered or erased your session.fil file, you should review the contents of baseout.msg 
to see which commands processed successfully. Remove these commands from basein.msg and 
reset the session by running iebase reset.

Changing files on restart 
You can change some files before you restart a session. The following list indicates which files 
you cannot change and which you can change with limitations. You can change any files that are 
not in the list. 

■ Message command file, basein.msg 

You cannot change any commands or parameters in basein.msg that have been echoed to 
baseout.msg. This includes characters such as blanks and carriage returns that occur between 
commands and parameters. You can change commands and parameters in basein.msg that 
Expedite Base for Windows has written to tempout.msg or that are not shown in 
tempout.msg or baseout.msg.

CAUTION:  Do not erase or alter the session file (session.fil) at any time. If session.fil 
is altered or erased during a restart, data may be duplicated or lost. If session.fil does 
not exist, Expedite Base for Windows starts processing at the beginning of the 
basein.msg file. When this happens, any data sent before the last successful checkpoint 
in the previous session is sent again. In addition, any data that was received during the 
previous session may be overwritten or erased. Files and messages received before the 
last successful checkpoint in the previous session are no longer available from 
Information Exchange. Issuing the same RECEIVEEDI command may cause data already 
received, but not processed, to be overwritten by the results of the most recent 
RECEIVEEDI command. 
118



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
■ Message response file, baseout.msg 

Do not change baseout.msg.

■ Profile command file, basein.pro 

You can change basein.pro if you want to modify a profile value. However, do not modify 
the COMMTYPE parameter of the TRANSMIT command.

■ Profile response file, baseout.pro 

There is no need to change baseout.pro since Expedite Base for Windows creates a new 
baseout.pro when you restart.

■ Profile information file, iebase.pro 

Never change iebase.pro. If you erase it, Expedite Base for Windows must create another 
iebase.pro using the commands in basein.pro. This means you must provide the required 
profile information again, such as your account, user ID, and password, using profile 
commands. If you erase iebase.pro before restarting, Expedite Base for Windows can still 
restart, but it does not display the error that caused the last session to end.

■ Session work file, session.fil   

Never change this file before restarting. Expedite Base for Windows uses it to restart the 
session.

■ EDI work file, ediwork.fil 

Never change this file before restarting. When you use the SENDEDI command with the 
VERIFY parameter set to c or g, Expedite Base for Windows uses this control file to track 
which EDI envelopes are sent and which are not.

■ Receive name file, rcvfiles.fil 

Never change this file before restarting. Expedite Base for Windows uses this control file to 
track files it receives during the session.

■ Receive offset file, rcvofset.fil 

Never change this file before restarting. It enables data to be appended correctly after restart.

■ EDI qualifier and destination tables 

Change these files only if there is a syntax error in the file. If you change the destination 
used for a SENDEDI command while the command is in progress, unpredictable results can 
occur.

■ Files being sent or received   

You can modify the EDI file you are sending with the SENDEDI command to correct a 
problem with the EDI format in data that was not sent, or to correct a destination that was 
found to be invalid if you specified VERIFY(Y) on the SENDEDI command.

Do not modify files you are sending with the SEND or PUTMEMBER command. Do not modify 
files you are receiving. Changes may cause unpredictable data to be sent or received.
119



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Reviewing an example of session restart 
This example illustrates a session in which some commands did not process successfully, and 
you must restart the session.

The files you are sending are test1.x12, test2.x12, and test3.x12 from the current directory. On 
the SENDEDI command for test2.x12, the FILEID parameter was misspelled. The following 
example shows the command file, basein.msg.

SENDEDI     FILEID(TEST1.X12);
SENDEDI     FILID(TEST2.X12);
SENDEDI     FILEID(TEST3.X12);

When the session is complete, the return code in the SESSIONEND record is15030. This return 
code indicates an invalid parameter in the command file. Postprocessing of the response file 
shows you what the error is but does not show you which command is in error. The following 
example shows the response file, baseout.msg.

SESSIONEND(15030)
ERRDESC(Invalid parameter found.)
ERRTEXT(EXPLANATION:  You specified an invalid parameter in the 
command)
ERRTEXT(file.)
ERRTEXT(USER RESPONSE:  Check the message response file BASEOUT.MSG,)
ERRTEXT(profile response file, BASEOUT.PRO, or response work file)

ERRTEXT(TEMPOUT.MSG, to determine which command produced the error.)
ERRTEXT(Correct the appropriate command file and retry the program.);

To determine which command is in error, examine the temporary response file (tempout.msg). It 
shows the error is on the SENDEDI command for the second file, test2.x12. Correct the error by 
correctly specifying the FILEID parameter and restart Expedite Base for Windows. Processing 
begins at the SENDEDI command for test2.x12. The following example shows the temporary 
response file, tempout.msg.

AUTOSTART SESSIONKEY(ID83H9OI);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(ID83H90I) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI     FILEID(TEST1.X12);
SENT UNIQUEID(39416704) LENGTH(2262) ACCOUNT(ACCT) USERID(USER1) 
EDITYPE(X12)
DESTINATION(ACCT   USER1) QUALIFIER(ZZ) CONTROLNUM(000022223) 
CLASS(#E2)
MSGNAME(00022223) MSGSEQNO(00001);
RETURN(00000);
SENDEDI     FILID(TEST2.X12)
RETURN(15030)
ERRDESC(Invalid parameter found.)
ERRTEXT(EXPLANATION:  You specified an invalid parameter in the command 
file.)
ERRTEXT(USER RESPONSE:  Check the message response file BASEOUT.MSG,)
ERRTEXT(profile response file, BASEOUT.PRO, or response work file)
ERRTEXT(TEMPOUT.MSG to determine which command produced the error.)
ERRTEXT(Correct the appropriate command file and retry the program.);
120



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Resetting a session 
You initiate a session reset when the session ends in error and you do not want Expedite Base for 
Windows to continue the Information Exchange session. When you reset a session, Expedite 
Base for Windows acts as if a session were never active and begins processing at the beginning of 
the command file. There is some risk in using the same command file when you reset a session. 
Any data sent before the last successful checkpoint in the previous session is sent again. Files and 
messages received before the last successful checkpoint in the previous session are no longer 
available from Information Exchange. You must process the data from these received files and 
messages before you use the command file again. Otherwise, the results of the most recent 
RECEIVEEDI commands may overwrite the data in the received files.

When an existing session ends because of an error, partially processing the response file can help 
you determine the commands that completed before the session ended. To partially process the 
response file, process the commands in baseout.msg that completed successfully, build a new 
basein.msg file with the commands that were not processed, and start Expedite Base for 
Windows by typing iebase reset on the command line.

Reviewing examples of session reset 
The following examples illustrate when a session reset is necessary. In these examples, the return 
code is 24100. This return code indicates that the session and Information Exchange checkpoints 
do not match. This is usually caused by accessing Information Exchange using the same account 
and user ID on different machines at the same time.

Example 1 
In this example, you are sending files and the session ends in error.

The following example shows the command file, basein.msg.

SENDEDI FILEID(ORDER1.X12);
SENDEDI FILEID(ORDER2.X12);
SENDEDI FILEID(ORDER3.X12);
SENDEDI FILEID(ORDER4.X12);
SENDEDI FILEID(ORDER5.X12);
SENDEDI FILEID(ORDER6.X12);
SENDEDI FILEID(ORDER7.X12);
SENDEDI FILEID(ORDER8.X12);
SENDEDI FILEID(ORDER9.X12);
SENDEDI FILEID(ORDER10.X12);

When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows which commands completed successfully. The 
RETURN(00000) indicates that the first five SENDEDI commands completed successfully and the 
files were sent to Information Exchange. However, the remaining SENDEDI commands were not 
processed. The following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(89354673);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(89354673) IEVERSION(04)
IERELEASE(06);

NOTE: If session.fil does not exist, then there were no checkpoints taken 
during the previous session and Expedite Base for Windows begins processing 
at the start of the command file. Therefore, partial processing of the response file 
is not necessary.
121



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
RETURN(00000);
SENDEDI FILEID(ORDER1.X12);
SENT UNIQUEID(43495778) LENGTH(6572);
RETURN(00000);
SENDEDI FILEID(ORDER2.X12);
SENT UNIQUEID(74469581) LENGTH(5342);
RETURN(00000);
SENDEDI FILEID(ORDER3.X12);
SENT UNIQUEID(67856334) LENGTH(3456);
RETURN(00000);
SENDEDI FILEID(ORDER4.X12);
SENT UNIQUEID(19600628) LENGTH(9865);
RETURN(00000);
SENDEDI FILEID(ORDER5.X12);
SENT UNIQUEID(37941045) LENGTH(9745);
RETURN(00000);
SENDEDI FILEID(ORDER6.X12);
SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery,)

ERRTEXT(the checkpoint numbers for the send or receive side of the)
ERRTEXT(session do not match the values Information Exchange recorded.)
ERRTEXT(Your session file, session.fil, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET)
ERRTEXT(command line parameter on the IEBASE command.)
ERRTEXT(Also, make sure there is not another user using this user ID.)
ERRTEXT(If the problem persists, contact the)
ERRTEXT(Help Desk. Before starting the next session, review the)
ERRTEXT(message response file, baseout.msg, to see which commands were)
ERRTEXT(processed successfully. Remove these commands from the)
ERRTEXT(message command file, basein.msg, so they are not processed 
again.)
ERRTEXT(Warning:  If you reset the session using the RESET)
ERRTEXT(command line parameter you will no longer be able to continue)
ERRTEXT(the previous session. Failure to modify the message command)
ERRTEXT(file, basein.msg, before resetting the session may result in)
ERRTEXT(some data being lost or duplicated.);

You need to edit the command file and delete the first five SENDEDI commands. Then reset the 
session by entering iebase reset on the command line.

Example 2 
In this example, you are receiving files and the session ends in error.

You are receiving four files from your Information Exchange mailbox. Each file has a different 
user class. The following example shows the command file, basein.msg.

RECEIVEEDI FILEID(RCV1.X12) CLASS(TEST1);
RECEIVEEDI FILEID(RCV2.X12) CLASS(TEST2);
RECEIVEEDI FILEID(RCV3.X12) CLASS(TEST3);
RECEIVEEDI FILEID(RCV4.X12) CLASS(TEST4);

NOTE: If you do not remove the first five SENDEDI commands before you reset 
the session, Expedite Base for Windows sends these files again.
122



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows which commands completed successfully. The 
RETURN(00000) indicates that the first three RECEIVEEDI commands completed successfully. 
However, the last RECEIVEEDI command was not processed. The following example shows the 
response file, baseout.msg.

AUTOSTART SESSIONKEY(U8372639);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(U8372639) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVEEDI FILEID(RCV1.X12) CLASS(TEST1);
RECEIVED ACCOUNT(ACT1) USERID(USER01) RECEIVER(ATAP PTRMMN) 
RECVQUAL(ZZ)
SENDER(ACCT   SENDER1) SENDQUAL(ZZ) CONTROLNUM(280900064) CLASS(TEST1) 
CHARGE(5)
LENGTH(8908) FILEID(RCV1.X12) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(111717) MSGSEQO(001955) SESSIONKEY(U8372639) DELIMITED(E)
SYSNAME(EBWIN95T) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(X12) SENDERFILE(SND1.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);
RECEIVEEDI FILEID(RCV2.X12) CLASS(TEST2);
RECEIVED ACCOUNT(ACT2) USERID(USER02) RECEIVER(ATAP PTRMMN) 
RECVQUAL(ZZ)
SENDER(ACCT   SENDER1) SENDQUAL(ZZ) CONTROLNUM(385928373) CLASS(TEST2) 
CHARGE(5)
LENGTH(4704) FILEID(RCV2.X12) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(111717) MSGSEQO(001956) SESSIONKEY(U8372639) DELIMITED(E)
SYSNAME(EBWIN95T) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(X12) SENDERFILE(SND2.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(38573968) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVEEDI FILEID(RCV3.X12) CLASS(TEST3);
RECEIVED ACCOUNT(ACT3) USERID(USER03) RECEIVER(ATAP PTRMMN) 
RECVQUAL(ZZ)
SENDER(ACCT   SENDER1) SENDQUAL(ZZ) CONTROLNUM(358029832) CLASS(TEST3) 
CHARGE(5)
LENGTH(5602) FILEID(RCV3.X12) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(111717) MSGSEQO(001957) SESSIONKEY(U8372639) DELIMITED(E)
SYSNAME(EBWIN95T) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(X12) SENDERFILE(SND3.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(68382967) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery,)
ERRTEXT(the checkpoint numbers for the send or receive side of the)
ERRTEXT(session do not match the values Information Exchange recorded.)
ERRTEXT(Your session file, session.fil, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET)
ERRTEXT(command line parameter on the IEBASE command.)
ERRTEXT(Also, make sure there is not another user using this user ID.)
123



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
ERRTEXT(If the problem persists, contact the)
ERRTEXT(Help Desk. Before starting the next)
ERRTEXT(session, review the message response file, baseout.msg,)
ERRTEXT(to see which commands were processed successfully. Remove)
ERRTEXT(these commands from the message command file,)
ERRTEXT(basein.msg, so they are not processed again.)
ERRTEXT(Warning:  IF you reset the session using the RESET)

ERRTEXT(command line parameter you will no longer be able to continue)
ERRTEXT(the previous session. Failure to modify the message command)
ERRTEXT(file, basein.msg, before resetting the session may result in)
ERRTEXT(some data being lost or duplicated.);

You need to edit the command file and delete the first three RECEIVEEDI commands. Then reset 
the session by entering iebase reset on the command line.

Example 3 
In this example, you are receiving multiple files with one RECEIVEEDI command and the session 
ends in error.

You are receiving six files from your Information Exchange mailbox using the MULTFILES 
parameter of the RECEIVEEDI command. You want to receive the first file in RCV.X12 and 
each subsequent file in a new file named by numbering the file extensions starting with 002. 

The new extension will be added after any existing extension on the file name; any original 
extension will not be truncated. If more than 999 files are received, the extension becomes four 
digits: .1000, .1001, .1002, and so on. If more than 9999 are received, the extension becomes five 
digits: .10000, .10002, and so on. If more than 99999 are received, the rest of the files are 
appended to the file name in the FILEID with the extension .ovf. The following example shows 
the command file, basein.msg.

RECEIVEEDI FILEID(RCV.X12) CLASS(TEST4) MULTFILES(Y);

When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows that Expedite Base for Windows received three files from your 
Information Exchange mailbox and stored them in rcv.x12, rcv.x12.002, and rcv.x12.003. The 
absence of RETURN(00000) before the SESSIONEND record indicates that more files are in your 
mailbox. The following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(UJBNSBSB);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(UJBNSBSB) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVEEDI FILEID(RCV.X12) CLASS(TEST4);
RECEIVED ACCOUNT(ACT1) USERID(USER01) RECEIVER(ATAP PTRMMN) 
RECVQUAL(ZZ)

CAUTION: If you specified overwrite(y) on the session command in basein.pro and 
you reset this session without modifying the command file, you lose the data in the 
three files you received. For more information, see “SESSION command” on page 
159.
If you specified OVERWRITE(N), and you reset this session without modifying the 
command file, then new data received is appended to the existing files with the same 
name. If Expedite Base for Windows appends data to an existing file, the data may be 
difficult to use.
124



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
SENDER(ACCT   SENDER1) SENDQUAL(ZZ) CONTROLNUM(305938203) CLASS(TEST4) 
CHARGE(5)
LENGTH(789) FILEID(RCV.X12) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(111717) MSGSEQO(001955) SESSIONKEY(UJBNSBSB) DELIMITED(E)
SYSNAME(EBWIN95T) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(X12) SENDERFILE(SND1.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(2004990630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(ACT2) USERID(USER02) RECEIVER(ATAP PTRMMN) 
RECVQUAL(ZZ)
SENDER(ACCT   SENDER1) SENDQUAL(ZZ) CONTROLNUM(305938203) CLASS(TEST4) 
CHARGE(5)
LENGTH(2501) FILEID(RCV.X12.002) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(111717) MSGSEQO(001956) SESSIONKEY(UJBNSBSB) DELIMITED(E)
SYSNAME(EBWIN95T) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(X12) SENDERFILE(SND2.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);

RECEIVED ACCOUNT(ACT1) USERID(USER01) RECEIVER(ATAP PTRMMN) 
RECVQUAL(ZZ)
SENDER(ACCT   SENDER1) SENDQUAL(ZZ) CONTROLNUM(305938203) CLASS(TEST4) 
CHARGE(5)
LENGTH(6271) FILEID(RCV.X12.003) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(111717) MSGSEQO(001957) SESSIONKEY(UJBNSBSB) DELIMITED(E)
SYSNAME(EBWIN9ST) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(X12) SENDERFILE(SND3.X12) SENDERLOC(EXPBASE)
FILEDATE(040630) FILEDATELONG(20040630) FILETIME(111414)
RECFM(????) RECLEN(00000) RECDLM(C) UNIQUEID(43495778) SYSTYPE(11)
SYSVER(1) TRANSLATE(IESTDTBL);

SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery,)
ERRTEXT(the checkpoint numbers for the send or receive side of the)
ERRTEXT(session do not match the values Information Exchange recorded.)
ERRTEXT(Your session file, session.fil, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET)
ERRTEXT(command line parameter on the IEBASE command.)
ERRTEXT(Also, make sure there is not another user using this user ID.)
ERRTEXT(If the problem persists, contact the Help Desk. Before 
starting)
ERRTEXT(the next session, review the message response file, 
baseout.msg,)
ERRTEXT(to see which commands were processed successfully. Remove)
ERRTEXT(these commands from the message command file,)
ERRTEXT(basein.msg, so they are not processed again.)
ERRTEXT(Warning:  If you reset the session using the RESET)
ERRTEXT(command line parameter you will no longer be able to continue)
ERRTEXT(the previous session. Failure to modify the message command)
ERRTEXT(file, basein.msg, before resetting the session may result in)
ERRTEXT(some data being lost or duplicated.);
125



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
Example 4 
In this example, you are sending six EDI envelopes within a single file, using a single SENDEDI 
command, when the session ends in error. The following example shows the command file.

SENDEDI FILEID(EDIDATA.FIL);

When the session ends in error, the return code in the SESSIONEND record is 24100. This return 
code indicates that the session and Information Exchange checkpoints do not match. Postpro-
cessing of the response file shows which envelopes were sent successfully. The following 
example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(65574GDK);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(65574GDK) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI FILEID(EDIDATA.FIL);
SENT UNIQUEID(87503678) LENGTH(3984);
SENT UNIQUEID(34987349) LENGTH(1403);
SENT UNIQUEID(37803293) LENGTH(3202);
SESSIONEND(24100)
ERRDESC(Session and Information Exchange checkpoints do not match.)
ERRTEXT(EXPLANATION:  In a session using checkpoint-level recovery,)
ERRTEXT(the checkpoint numbers for the send or receive side of the)
ERRTEXT(session do not match the values Information Exchange recorded.)
ERRTEXT(Your session file, session.fil, may be damaged.)
ERRTEXT(USER RESPONSE:  Reset the session using the RESET)
ERRTEXT(command line parameter on the IEBASE command.)
ERRTEXT(Also, make sure there is not another user using this user ID.)
ERRTEXT(If the problem persists, contact the Help Desk. Before 
starting)
ERRTEXT(the next session, review the message response file, 
BASEOUT.MSG,)
ERRTEXT(to see which commands were processed successfully. Remove)
ERRTEXT(these commands from the message command file,)

CAUTION: If you specified overwrite(y) on the session command in basein.pro and 
you reset this session without modifying the command file, you lose the data in the 
three files you received. For more information, see “SESSION command” on page 
159.
If you specified OVERWRITE(N), and you reset this session without modifying the 
command file, then new data received is appended to the existing files with the same 
name. If Expedite Base for Windows appends data to an existing file, the data may be 
difficult to use. Therefore, you need to consider one of the following actions before you 
reset the session:

• Process the data in RCV.X12, RCV.X12.002, and RCV.X12.003; for example, store 
the data in a database. Then erase the files or specify OVERWRITE(Y) on the SESSION 
command.

• Rename the files RCV.X12, RCV.X12.002, and RCV.X12.003 so that Expedite 
Base for Windows does not overwrite them or append data to them when it receives 
the remaining files.

• Change the name in the FILEID parameter of the RECEIVEEDI command to 
something other than RCV.X12 so that Expedite Base for Windows uses new file 
names when it receives the remaining files.
126



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
ERRTEXT(basein.msg, so they are not processed again.)
ERRTEXT(Warning:  If you reset the session using the RESET)
ERRTEXT(command line parameter you will no longer be able to continue)
ERRTEXT(the previous session. Failure to modify the message command)
ERRTEXT(file, basein.msg, before resetting the session may result in)
ERRTEXT(some data being lost or duplicated.);

The response file shows three SENT records, indicating three of the six EDI envelopes were sent 
to Information Exchange before the error occurred. You need to edit the EDI file, edidata.fil, to 
remove the first three EDI envelopes before you reset the session. Then reset the session by 
entering iebase reset on the command line.

Checking the SENT, NOTSENT, and RECEIVED response records 
You cannot determine what files Expedite Base for Windows sent or received by examining only 
the RETURN record. You must also examine the SENT, NOTSENT, and RECEIVED records.

■ SENT response records follow SENDEDI commands. Expedite Base for Windows writes a 
SENT record for each EDI envelope that is sent. If no SENT record exists, Expedite Base for 
Windows did not send any EDI envelopes.

■ NOTSENT response records follow SENDEDI commands, with VERIFY(C) or VERIFY(G) 
specified, for each EDI envelope that could not be completed successfully due to a desti-
nation verification failure.

RECEIVED response records follow RECEIVEEDI commands. A RECEIVED record is written for 
each file received from Information Exchange. Files that have RECEIVED records are no longer in 
your Information Exchange mailbox and you cannot receive them again. If no RECEIVED record 
exists for a file, Expedite Base for Windows did not receive it.

Checking return codes 
When a session completes, Expedite Base for Windows provides two numeric codes that identify 
the activities it performed. The first code is a five-digit return code that Expedite Base for 
Windows displays in the SESSIONEND or RETURN response record in baseout.msg. These return 
codes are grouped into categories, such as message command syntax errors and profile command 
syntax errors.

The second code is a one- to three-digit error-level code that Expedite Base for Windows writes 
to a file called errorlvl. You can use this error-level code and the Expedite Base for Windows 
return codes to decide what actions, if any, to take in the next session. For descriptions of the 
error-level codes and return codes, see Appendix A, “Expedite Base for Windows error codes 
and messages.’’

The decision to restart or reset a session is based on the return code value in the SESSIONEND 
response record in baseout.msg. The following return codes are grouped into four categories:

NOTE: If you do not remove the first three EDI envelopes from edidata.fil 
before you reset the session, Expedite Base for Windows sends the first three 
envelopes again.

NOTE: You should look only at the SENT, NOTSENT, and RECEIVED records in 
baseout.msg. You should not rely on the records in tempout.msg, which contain 
information processed since the last checkpoint.
127



Expedite Base for Windows Programming Guide

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
■ The return code is 00000, session completed normally. The Expedite Base for Windows 
error-level code is zero.

If the return code is zero, you may still need to process the responses in the response file. For 
example, if you receive multiple files from your mailbox to your system using separate file 
names, you need to know the names of the files and how many you received. If you receive 
files from your mailbox to your system using the original file names, you may need to check 
the file names indicated in the CDH. If you request system messages, such as error messages 
and acknowledgments, you may need to check this information.

Information Exchange places error messages in your mailbox in a fixed format message with 
account *SYSTEM* and user ID *ERRMSG*. To receive these messages, you must issue a 
RECEIVE command for this account and user ID and process the information in the response 
file. This is also how you receive acknowledgments.

■ The return codes are 16000-16999, or 28000-28020, session ended but incomplete. The 
Expedite Base for Windows error-level code is 112.

Errors 16000-16999 indicate a problem trying to send the information to the specified desti-
nation. Error 28000 indicates that a warning was generated. Error 28010 indicates that one or 
more of the commands in the command file was not processed because of an error. The error 
number is shown in the RETURN response record immediately following the command that 
caused the error. A description of the error is in the ERRDESC and ERRTEXT records in the 
response file immediately following the SESSIONEND response record.

Error 28020 indicates an error occurred during the disconnect process. The number of the 
error that occurred is shown in a WARNING record following the SESSIONEND record. The 
WARNING record is followed by ERRDESC and ERRTEXT records describing the error.

The information Expedite Base for Windows displays in the ERRDESC and ERRTEXT records 
is similar to the information in Appendix A, “Expedite Base for Windows error codes and 
messages.’’
128



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
■ The return code is one of the following and indicates that a session restart is necessary. 

■ The return code indicates that a session reset is necessary. The Expedite Base for Windows 
error-level code is 113 or 114. If the error-level code is 114, you may be able to resolve the 
problem simply by redialing. If this does not resolve the problem, you must reset the session.

• Session start and end error return codes 24000-24699
• Unexpected errors and commit error return codes 31000-31339

In addition, the Customer Care Help Desk may suggest that the session be reset for other 
reasons. Your application interface should offer an easy way to reset the session and partially 
process the response file.

Return code Category description Error-level code

11863, 26996 Wait and try again later 110

02000-04999 Message command syntax errors 111

05000-09999 Profile command syntax errors 104 

11000-11999 Network errors 111

12000-12199 Modem script syntax errors 111, 114 

12200-12399 Display status script syntax errors 111

12500-12599 LAN modem configuration script syntax 
errors

111

13000-13999 Communication device driver errors 111 

14000-15999 Parser errors 111

17000-18999 EDI parsing, send, or receive errors 111

19000-19999 TCP/IP communication errors 111

20000-23999 General environment errors 111

24000-24699s Session start and end errors 113

25000 PF key exit 111

26000-26999 Internal communications errors 111, 114

27000-27099 Old message.fil errors 111, 114

28100-28200 Miscellaneous command processing errors 111

29998 Modem command processor error 111

31400 Unexpected program interrupt error Unknown
129



Expedite Base for Windows Programming Guide

Using session-level recovery
Using session-level recovery 
When using a leased line, you can select session-level recovery, because it is very unlikely the 
line will go down during the data transfer. When you use session-level recovery, there is less 
processing required to recover after a failed session, as it is an all-or-nothing data transfer 
method.

When using a dial line, you can also select session-level recovery if you are transmitting only a 
small amount of data. If the line is disconnected, simply start the session over from the 
beginning.

When you use session-level recovery to transmit data and an error occurs, Expedite Base for 
Windows stops transmission and produces a SESSIONEND record with a return code. You can 
check this return code to determine the cause of the error and correct the problem.

With session-level recovery, if data transmission stops, you must send and receive all files again. 
Although it takes time to retransmit large amounts of data, there are advantages to using session-
level recovery. For example, you do not need to be concerned with determining which files 
Expedite Base for Windows sent successfully and which files you need to resend.

If you use multiple START and END commands in basein.msg, there are certain precautions you 
must take. See “Using multiple START and END commands with session-level recovery” on 
page 136 for more information.

If the session completes abnormally but you have return records for all of your commands with 0 
return codes, then restart the session to allow it to complete normally. Do not reset the session, or 
lost or duplicate data may occur.

Using session-level recovery, however, has disadvantages. With checkpoint-level recovery, 
Information Exchange commits the data sent or received when a checkpoint takes place during 
the session. The commit processing is done in short intervals throughout the session. For a 
session-level recovery session, this processing is all done at the end of the session. So when 
Expedite Base for Windows sends the SESSIONEND command, Information Exchange does not 
return the SESSIONEND response until the commit processing is completed. If a large number of 
files are transferred during the session, the processing takes longer, especially during prime 
business hours.

During the processing, it is possible for the line to be disconnected because of a timeout. 
Expedite Base for Windows ends the session with a 29999 return code, “Session end response 
failure.” In this case, it is not clear whether or not the session ended successfully.

There are several ways to determine if the session was successful or not. For example, the CHECK 
parameter on the START command indicates to Expedite Base for Windows that you only want to 
check the status of the previous session. If you specify CHECK on the START command, do not 
specify any other commands except the END command in the input file. See “START command” 
on page 233 for more information.

CAUTION: If you start an Information Exchange session using session-level recovery 
while another Information Exchange session with the same account and user ID is 
running, Information Exchange ends the first session and starts the second session. 
Information Exchange does not deliver data sent in the first session and does not delete 
received data from the mailbox. This means that data received in the first session may 
be received again in error. The results when the first session ends are unpredictable.
130



Chapter 7. Sending and receiving EDI data

Using session-level recovery
Expedite Base for Windows also provides information about the previous session on the 
STARTED record. This record is written to the output file as a result of a START or AUTOSTART 
command. See “STARTED record” on page 261 for more information. 

After a session fails with 29999, follow these steps: 

1. Specify AUTOSTART(N), AUTOEND(N), and RECOVERY(S) on your TRANSMIT command in the 
Expedite profile.

2. Create an input file containing START and END records; an example follows:

        START  CHECK(Y);
        END;

3. Run Expedite Base for Windows. No data is transferred in the above example, and you are 
not charged for this inquiry.

4. Examine the output file to check the LASTSESS  parameter value on the STARTED record.

If Expedite Base for Windows reported the 29999 SESSIONEND return code for a session-level 
recovery session, you should switch to checkpoint-level, file-level, or user-level recovery for 
future sessions with a similar number of commands.

If you were only receiving files from your Information Exchange mailbox, make sure all data 
was received by verifying that it is no longer in your mailbox. You can do this by viewing your 
mailbox with Information Exchange Administration Services or by running a QUERY command 
to get a list of AVAILABLE response records for each file in your mailbox. If the data is still in 
your mailbox, switch from session-level recovery to checkpoint-level recovery and run the 
session again to receive the data.

If you were sending files, you must check your audit trail to see if the files were sent. You can do 
this by using Information Exchange Administration Services, or by using Expedite Base for 
Windows to request an audit be sent to your mailbox. Refer to Chapter 9, “Using Expedite Base 
for Windows message commands,’’, and “Using audit trails” on page 263 for more information. 
If the files were not sent, switch to checkpoint-level recovery and run the session again.

When a large number of files is being sent or received, session-level recovery is not recom-
mended. Customers have experienced timeout problems when sending or receiving more than 
700 files (the size of the files does not matter). Use checkpoint-, user-, or file-level recovery 
instead.

NOTE: Do not specify any other commands in the input file if you specify 
CHECK(Y) on the session start command.

LASTSESS(0) Indicates the previous session was successful. No further recovery is 
required.

LASTSESS(1) Indicates the previous session was not successful.
131



Expedite Base for Windows Programming Guide

Understanding post-session processing for session-level recovery
Understanding post-session processing for session-level recovery  
The following sections describe what to do when a session ends with an error condition. Post-
session processing activities for session-level recovery include:

■ Processing the baseout.msg response file records
■ Checking return codes

Processing the response file records
When you transmit data, Expedite Base for Windows processes your message command file and 
creates a message response file, baseout.msg. The response records in baseout.msg are free-
format records. Their syntax is the same as that defined for commands. Response records always 
start at the beginning of a line. However, parameters in response records may occur in any 
position and in any order. In addition, Expedite Base for Windows may not show all parameters 
in a response record. When examining response records, consider the following:

■ Assume a default value if you do not get a response record parameter you are expecting. 
This is not an error.

■ Truncate the parameter if a response record parameter is longer than you expect.

Be prepared to handle parameters that are split across records. Splitting can occur if the 
parameter is longer than the record length of your response file.

Checking return codes  
To ensure that Expedite Base for Windows finished processing the message command file, check 
the return code in the SESSIONEND record. Detailed return code descriptions are included in 
Appendix A, “Expedite Base for Windows error codes and messages.’’

The following is a list of the SESSIONEND return codes.

■ The return code is 00000, session completed normally. The Expedite Base for Windows 
error-level code is zero.

If the return code is 0, Expedite Base for Windows processed all commands and all 
command RETURN records contain zero return codes.

■ The return codes are 28000-28020, session ended but incomplete. The Expedite Base for 
Windows error-level code is 112.

Error 28000 indicates that a warning was generated. Error 28010 indicates that one or more 
of the commands in the basein.msg command file was not processed because of a command 
file error. If the return code was 28020, all commands in the command file were processed, 
and an error occurred during the disconnect process. If the problem was with the command 
file, correct the command that caused the error and run the program again. If the problem is 
in the disconnect process, the session completed successfully but you should correct the 
problem so that future sessions disconnect from the network properly.

NOTE: You should be prepared for the possibility of new parameters on 
existing response records and entirely new response records that may be 
provided in the future.
132



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for session-level recovery
The error number is shown in the RETURN response record immediately following the 
command that caused the error. The errors are described in ERRDESC and ERRTEXT records 
files immediately following the SESSIONEND response record. If the error is caused by a 
problem with a specific command, such as a syntax error, the command in error is followed 
by a RETURN record with the same return code as the SESSIONEND record.

■ The return code is not 00000, 28010, or 28020. The Expedite Base for Windows error-level 
code is 110, 111, 113, or 114.

This error indicates that Expedite Base for Windows did not finish processing the command file, 
the Information Exchange session failed, and none of the file transfer requests in the message 
command file completed. Expedite Base for Windows did not place any mail in your trading 
partner’s Information Exchange mailbox or remove any from your mailbox. The SESSIONEND 
record may include an error description to help you find the problem. A command RETURN 
record may contain the same code and description. If baseout.msg does not contain a RETURN 
record, check baseout.pro for the error.

Requests other than file transfer may complete even if the Expedite Base for Windows 
SESSIONEND is not 28010, 28020, or 00000. These requests include:

■ ARCHIVEMOVE
■ AUDIT
■ CANCEL
■ DEFINEALIAS
■ GETMEMBER
■ LIST
■ LISTLIBRARIES
■ LISTMEMBERS
■ PURGE

If these requests are followed by a RETURN(00000) record in baseout.msg, they completed and 
you do not need to reissue them.

Reviewing examples of session-level recovery  
The following examples illustrate session-level recovery.

Example 1 
This example illustrates a session that ends in error when you are sending files.

You are sending five EDI files. The following example shows the command file, basein.msg.

SENDEDI FILEID(FILE1.X12);
SENDEDI FILEID(FILE2.X12);
SENDEDI FILEID(FILE3.X12);
SENDEDI FILEID(FILE4.X12);
SENDEDI FILEID(FILE5.X12);

NOTE: While Expedite Base for Windows is receiving data from Information 
Exchange, it saves the data in files on your PC. Even if a session does not 
complete successfully, Expedite Base for Windows may have received and 
saved data during the session. However, since you are using session-level 
recovery, both Information Exchange and Expedite Base for Windows ignore the 
files that were sent and received during the unsuccessful session. The next time a 
session is started, all of the data will be sent and received again.
133



Expedite Base for Windows Programming Guide

Understanding post-session processing for session-level recovery
When the session ends in error, the return code in the SESSIONEND record is 26805. This return 
code indicates that the carrier was lost during the send process. The two SENT records indicate 
that Expedite Base for Windows sent the first two files before the session ended. However, since 
you are using session-level recovery, Information Exchange will not deliver these files to the 
trading partner’s mailbox until the session ends successfully. You must resend the files. The 
following example shows the response file, baseout.msg.

AUTOSTART SESSIONKEY(S556HJDU);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(S556HJDU) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI FILEID(FILE1.X12);
SENT UNIQUEID(07580371) LENGTH(500);
RETURN(00000);
SENDEDI FILEID(FILE2.X12);
SENT UNIQUEID(78207881) LENGTH(300);
RETURN(00000);
SENDEDI FILEID(FILE3.X12);

SESSIONEND(26805)
ERRDESC(Lost carrier.)
ERRTEXT(EXPLANATION:  The carrier was lost during data transmission.)
ERRTEXT(USER RESPONSE:  Retry the program. If the program persists,)
ERRTEXT(contact the Help Desk.);

Because you are using session-level recovery, Information Exchange discards the files sent to it 
in the previous incomplete session. To send all the files, run the program again. When Expedite 
Base for Windows establishes a session, it processes all the commands in the command file again 
so you send all five files.

Example 2  
This example illustrates a session that ends in error when you are receiving files.

You want to receive four files from your Information Exchange mailbox. Each file has a different 
user class. The following example shows the command file, basein.msg.

RECEIVEEDI FILEID(RCV1.X12) CLASS(TEST1);
RECEIVEEDI FILEID(RCV2.X12) CLASS(TEST2);
RECEIVEEDI FILEID(RCV3.X12) CLASS(TEST3);
RECEIVEEDI FILEID(RCV4.X12) CLASS(TEST4);

When the session ends in error, the return code in the SESSIONEND record is 26996. This return 
code indicates that Expedite Base for Windows timed out while waiting for a response from the 
network. The three RECEIVED records indicate that you received the first three files before the 
session ended, but you did not receive all four files. The following example shows the response 
file, baseout.msg.

AUTOSTART SESSIONKEY(ERWT4639S);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(ERWT4639S) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
RECEIVEEDI FILEID(RCV1.X12) CLASS(TEST1);
RECEIVED ACCOUNT(ACT1) USERID(USER01) RECEIVER(ACT1    DEPT01)
RECVQUAL(01) SENDER(ACT2    DEPT02) SENDQUAL(01) CONTROLNUM(000022228)
CLASS(TEST1) CHARGE(5) LENGTH(441) FILEID(RCV1.X12) MSGDATE(040701)
MSGDATELONG(20040701) MSGTIME(111717) MSGSEQO(001955)
SESSIONKEY(ERWT4639S) DELIMITED(N) SYSNAME(EBWIN9ST) SYSLEVEL(0450)
134



Chapter 7. Sending and receiving EDI data

Understanding post-session processing for session-level recovery
TIMEZONE(L) DATAYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND1.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVEEDI FILEID(RCV2.X12) CLASS(TEST2);
RECEIVED ACCOUNT(ACT2) USERID(USER02) RECEIVER(ACT1    DEPT01)
RECVQUAL(01) SENDER(ACT2    DEPT02) SENDQUAL(01) CONTROLNUM(000022228)
CLASS(TEST2) CHARGE(5) LENGTH(786) FILEID(RCV2.X12)
MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(111717) MSGSEQO(001955)
SESSIONKEY(ERWT4639S) DELIMITED(N) SYSNAME(EBWIN9ST) SYSLEVEL(0450)
TIMEZONE(L) DATAYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND2.FIL) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVEEDI FILEID(RCV3.X12) CLASS(TEST3);
RECEIVED ACCOUNT(ACT3) USERID(USER03) RECEIVER(ACT1    DEPT01)
RECVQUAL(01) SENDER(ACT2    DEPT02) SENDQUAL(01) CONTROLNUM(000022228)
CLASS(TEST3) CHARGE(5) LENGTH(5891) FILEID(RCV3.X12)
MSGDATE(040701) MSGDATELONG(20040701) MSGTIME(111717) MSGSEQO(001955)
SESSIONKEY(ERWT4639S) DELIMITED(N) SYSNAME(EBWIN9ST) SYSLEVEL(0450)
TIMEZONE(L) DATAYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(SND3.X12) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(111414) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(43495778) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

SESSIONEND(26996)
ERRDESC(Timed-out while waiting for a response.)
ERRTEXT(EXPLANATION:  DCL timed-out while waiting for a response from)
ERRTEXT(the network gateway. This can occur if the line is)
ERRTEXT(dropped and the operating system does not return)
ERRTEXT(the lost-carrier condition to the program.)
ERRTEXT(USER RESPONSE:  Retry the program. If the problem persists,)
ERRTEXT(it may be that the Asynchronous Relay is down. Try the)
ERRTEXT(program again in about 30 minutes. If the problem still)
ERRTEXT(occurs, contact the Help Desk.);

Because you are using session-level recovery, Information Exchange ignores the three files it 
sent to you in the previous incomplete session. To receive all the files, run the program again. 
When Expedite Base for Windows establishes a session, it processes all the commands in the 
command file again so that you receive all four files.

NOTE: If you specified OVERWRITE(N) in the SESSION command in basein.pro 
and you run the program again without deleting the three files you originally 
received, Expedite Base for Windows appends the three files you receive the 
second time to the three files you received the first time. For more information, 
see “SESSION command” on page 159.
135



Expedite Base for Windows Programming Guide

Using multiple START and END commands with session-level recovery
Using multiple START and END commands with session-level 
recovery  

It is important to note the difference between an Expedite Base for Windows session and an 
Information Exchange session. An Expedite Base for Windows session consists of all commands 
specified in basein.msg that are issued during a single network connection. An Information 
Exchange session consists of the commands issued between a START command and an END 
command in basein.msg. The Expedite Base for Windows session is the same as the Information 
Exchange session when there is only one START command and one END command in basein.msg. 
However, Expedite Base for Windows allows the user to start and end multiple Information 
Exchange sessions within a single Expedite Base for Windows connection. 

If you use multiple START and END commands in basein.msg, you create an environment similar 
to that of checkpoint-level recovery. Each END command stops an Information Exchange session. 
Requests in each Information Exchange session complete even if a subsequent Information 
Exchange session ends in error. Only Information Exchange sessions that end in error require 
you to send or receive data again.

If you specify multiple START and END commands in basein.msg and an error occurs before all 
commands in basein.msg have completed, you must take special measures to process your 
basein.msg and baseout.msg files before restarting. These measures are similar to those you must 
take when doing checkpoint-level, file-level, and user-initiated data recovery. That is, you must 
review the contents of baseout.msg to determine which of the Information Exchange sessions 
completed successfully and which need to be run again. Commands in the successful sessions  
must be removed from basein.msg to avoid sending duplicate data or losing received data.

When an Information Exchange session has completed, Expedite Base for Windows will write 
two records to baseout.msg. The first is the END record, which is echoed from basein.msg. The 
second record Expedite Base for Windows will write is the RETURN record, which shows the 
return code for the END command. When you see the END and RETURN records in baseout.msg, all 
commands in that Information Exchange session have been completed. Before starting Expedite 
Base for Windows again, you should remove all commands processed successfully from 
basein.msg..

CAUTION:  Failure to remove commands for successfully completed Information 
Exchange sessions from basein.msg may result in duplicate or lost data in subsequent 
Expedite Base for Windows sessions. When using session-level recovery with multiple 
start and end commands, you must process your basein.msg and baseout.msg files 
similar to the way required for checkpoint-level, file-level, and user-initiated data 
recovery. You should use session-level recovery with a single start and end command 
to avoid the need to process these files after incomplete sessions. If you need to run 
multiple Information Exchange sessions within a single Expedite Base for Windows 
session, you may consider using checkpoint-level, file-level, or user-initiated recovery 
instead of session-level recovery.

NOTE: When Expedite Base for Windows has completed all commands in 
basein.msg, it writes a return code for the Expedite Base for Windows session. The 
return code is specified in the SESSIONEND record in baseout.msg. There will only be 
one SESSIONEND record in baseout.msg, regardless of the number of Information 
Exchange sessions started and ended within basein.msg.
136



Chapter 7. Sending and receiving EDI data

Using multiple START and END commands with session-level recovery
Reviewing examples using multiple Information Exchange sessions with session-level 
recovery 

Example 1
This example illustrates three Information Exchange sessions within a single Expedite Base for 
Windows session. The following shows the contents of basein.msg.

START;
SENDEDI FILEID(FILE1.X12);
END;
START;
RECEIVEEDI FILEID(RCV.X12);
END;
START;
SENDEDI FILEID(FILE2.X12);
END;

Following are the contents of baseout.msg when Expedite Base for Windows has completed 
processing.

START;
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(TT9OEJL) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(TT9OEJL);
SENDEDI FILEID(FILE1.X12);
SENT UNIQUEID(73133557) LENGTH(500);
RETURN(00000);
END;
RETURN(00000);

START;
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(SOVSHX25) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(SOVSHX25);
RECEIVEEDI FILEID(RCV.X12);
RECEIVED ACCOUNT(ACCT) USERID(USER02) RECEIVER(ACT1    DEPT01)
RECVQUAL(01) SENDER(ACT2    DEPT02) SENDQUAL(01) CONTROLNUM(000022228)
CLASS(TEST1) CHARGE(5) LENGTH(4101) FILEID(RCV.X12) MSGDATE(040809)
MSGDATELONG(20040809) MSGTIME(134011) MSGSEQO(001988)
SESSIONKEY(SOVSHX25) DELIMITED(N) SYSNAME(EBWIN95T) SYSLEVEL(0450)
TIMEZONE(L) DATATYPE(A) EDITYPE(X12) SENDERFILE(SENDER.FIL)
SENDERLOC(EXPBASE) FILEDATE(040412) FILEDATELONG(20040412)
FILETIME(120000) RECFM(????) RECLEN(0) RECDLM(C) UNIQUEID(73133557)
SYSTYPE(15) SYSVER(4) TRANSLATE(IESTDTBL);
RETURN(00000);
END;
RETURN(00000);

START;
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(H5PWUVBS) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(H5PWUVBS);

SENDEDI FILEID(FILE2.X12);
SENT UNIQUEID(00959571) LENGTH(1335);
RETURN(00000);
END;
RETURN(00000);
137



Expedite Base for Windows Programming Guide

Using multiple START and END commands with session-level recovery
SESSIONEND(00000);

Note that each of the END records is followed by a RETURN record. This means that each of the 
Information Exchange sessions completed. Further, the return code 00000 in the RETURN records 
indicates that each session completed successfully. Finally, the SESSIONEND record indicates the 
completion of the Expedite Base for Windows session.

Example 2
This example uses the same input file as Example 1. However, in this example, the output file 
indicates that a problem occurred during the connection. Following are the contents of 
baseout.msg when Expedite Base for Windows has completed processing.

START;
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(KDFGSFDE) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(KDFGSFDE);
SENDEDI FILEID(FILE1.X12);
SENT UNIQUEID(73133557) LENGTH(500);
RETURN(00000);
END;
RETURN(00000);

START;
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(XXDGRL73) IEVERSION(04)
IERELEASE(06);
RETURN(00000) SESSIONKEY(XXDGRL73);
RECEIVEEDI FILEID(RCV.X12);

SESSIONEND(26805)
ERRDESC(Lost carrier.)
ERRTEXT(EXPLANATION:  The carrier was lost during data transmission.)
ERRTEXT(USER RESPONSE:  Retry the program. If the problem persists, 
contact)
ERRTEXT(the Help Desk.);

In this example, the first Information Exchange session completed successfully, as indicated by 
the END and RETURN(00000) records. However, the second session did not complete successfully. 
The baseout.msg file shows that there are no END or RETURN records associated with the second 
Information Exchange session. The RECEIVEEDI command is, instead, followed by a SESSIONEND 
record indicating the end of the Expedite Base for Windows session. In addition, there are 
ERRDESC and ERRTEXT records with information about the problem.

Because you are using session-level recovery, Expedite Base for Windows will begin processing 
at the beginning of basein.msg the next time it is run. If no changes are made to basein.msg, the 
file that was successfully sent the first time will be sent again, resulting in duplicate data sent to 
Information Exchange. Therefore, before you restart Expedite Base for Windows, you should 
remove the commands associated with this Information Exchange session from basein.msg. 

The new basein.msg should appear as follows:

START;
RECEIVEEDI FILEID(RCV.X12);
END;
START;
SENDEDI FILEID(FILE2.X12);
END;
138



Chapter 7. Sending and receiving EDI data

Receiving multiple files
Receiving multiple files 
In the RECEIVEEDI command, you must specify the name of the file in which Expedite Base for 
Windows is to place the received file. If you have more than one file in your mailbox, you can 
receive the files from the mailbox in a single file or receive each file in a separate file.

When you want to receive multiple files from your mailbox in a single file, Expedite Base for 
Windows appends the files in the order it receives them. This is the default for receiving multiple 
files.

When you receive multiple files from your mailbox in separate files, specify the value y in the 
MULTFILES parameter. This tells Expedite Base for Windows to place the first file in the file 
you specified and place subsequent files in new files by numbering the file extensions starting 
with 002.

The new extension will be added after any existing extension on the file name; any original 
extension will not be truncated. If more than 999 files are received, the extension becomes four 
digits: .1000, .1001, .1002, and so on. If more than 9999 are received, the extension becomes five 
digits: .10000, .10002, and so on. If more than 99999 are received, the rest of the files are 
appended to the file name in the FILEID with the extension .ovf.

For example, if you specify FILEID(test.msg) and three files are received, Expedite Base for 
Windows names the files as follows:

File 1 = TEST.MSG
File 2 = TEST.MSG.002
File 3 = TEST.MSG.003

Receiving specific files 
Previous sections of this chapter have demonstrated that you can specify certain criteria on the 
RECEIVEEDI command to limit the files that you receive. For example, you can receive all files 
from a particular user, or all files with a particular user class.

You can use the RECEIVEEDI command to specify a date and time range for files you want to 
receive. Expedite Base for Windows checks the date and time the files were sent to you, and 
gives you those files that fall within your specified data and time range.

For example, suppose you wanted to receive only those files sent to you between noon and 6:00 
p.m. on June 14, 2004. You would include the following on your RECEIVEEDI command:

STARTDATE(040614) STARTTIME(120000) ENDDATE(040614) ENDTIME(180000) 
TIMEZONE(L)

Expedite Base for Windows also allows you to receive a single, specific file even if other files in 
your mailbox are from the same sender or have the same user class. Each file in your mailbox has 
a unique message key that distinguishes the file from all others. You can issue a RECEIVEEDI 
command using the MSGKEY parameter to specify the unique message key of the file you want to 
receive.

For example, suppose there were three files in your mailbox from the same user, with the same 
user class. The files were sent to your mailbox on three consecutive days. However, you are only 
interested in receiving the first file, which has a unique message key of 
887A9DE0021FA9C236F8. Your RECEIVEEDI command might look as follows:

RECEIVEEDI FILEID(FIRST.FIL) MSGKEY(887A9DE0021FA9C236F8);
139



Expedite Base for Windows Programming Guide

SENDEDI and RECEIVEEDI file number limits
As a result of this command, Expedite Base for Windows receives only the file with this message 
key. To find out what the message key is for a specific file, you can use Information Exchange 
Administration Services, or use the Expedite Base for Windows QUERY command in basein.msg. 
As a response to the QUERY command, Expedite Base for Windows provides information about 
each of the files in your mailbox, including the message key for each file.

“Querying a mailbox” on page 265 provides more information about using the QUERY command. 
“RECEIVEEDI command” on page 215 provides information about the format of the 
RECEIVEEDI command.

SENDEDI and RECEIVEEDI file number limits 
Information Exchange limits the number of files that can be sent and received between commits 
because of the processing requirements involved. The current limit of 1,000 files is an Infor-
mation Exchange value that can be set differently in different Information Exchange installa-
tions. Contact your marketing representative to determine the maximum for Information 
Exchange installations outside the U.S.

There are also limitations in the number of files that can be sent and received to and from 
Expedite Base for Windows which depend upon the type of recovery you are using. This section 
discusses limitations which you should take into consideration for your installation.

User-level recovery 
If you use user-level recovery, you must not specify more than 1,000 SEND, SENDEDI, or 
PUTMEMBER commands without specifying a COMMIT command. Do not send more than 1,000 
EDI envelopes within a single file because each envelope counts as a file.

Checkpoint-level recovery  
If you use checkpoint-level recovery, Expedite Base for Windows will perform a COMMIT after 
sending or receiving the number of characters specified in the COMMITDATA parameter on the 
TRANSMIT command in basein.pro. The default value is 141000. You must not attempt to send or 
receive more than 1,000 files whose combined size is less than the value of the COMMITDATA 
parameter. If this is the case, you can either lower the value in the COMMITDATA parameter or 
decrease the number of files being sent or received. This will allow a COMMIT to be performed 
before the 1,000 file limit is reached.

File-level recovery 
If you use file-level recovery, there is no limitation on the number of files you can send or 
receive. This is because each file is committed as it is sent or received, and the maximum number 
of files between commits is 1. If you are sending or receiving many small files, you can get better 
performance using checkpoint-level recovery.

Session-level recovery 
If you use session-level recovery and you try to send more files than the limit, you will receive an 
error from Information Exchange, which Expedite Base for Windows reports to you as 
SESSIONEND return code 31360. In this case, break your input file into multiple input files and run 
Expedite Base for Windows for each of the input files.
140



Chapter 7. Sending and receiving EDI data

Integrating with an EDI translator
If you have more than 1,000 files in your mailbox that match your receive request, Information 
Exchange stops sending them when the 1,000 file limit is reached. If you have more files in your 
mailbox, Expedite returns a 28171 value in the RETURN parameter after the last file was received. 
The SESSIONEND code is 28010, indicating the session completed successfully but not all 
commands were processed. The data you already received is no longer in your Information 
Exchange mailbox, but there are still additional files in the mailbox which match your receive 
request. Before running Expedite Base for Windows again to receive the remaining files, be sure 
to process the data already received in order to ensure that the files are not overwritten during the 
next session with Information Exchange. See “Using session-level recovery” on page 130 and in 
Chapter 6 for more information about processing received files when using session-level 
recovery.

Integrating with an EDI translator 
The basic purpose of Electronic Data Interchange is to provide common standards for the 
exchange of data so that the output from one computer application can be the input to a trading 
partner’s application. However, few computer programs are written that provide data formatted 
according to an EDI standard. Data is usually stored in a proprietary format to meet the needs of 
the business.

This is where EDI translators become important. A business can purchase or build an EDI trans-
lator that can read the proprietary data and produce properly formatted EDI data that is 
sometimes referred to as documents. The trading partner then can use a translator that can receive 
the EDI data and reformat it to its proprietary format. The following example illustrates this:

A business application can be designed so that when a file is designated to be sent to a trading 
partner, it is first read into the translator so that a properly formatted EDI document is produced. 
This document can then be stored on the PC with other EDI documents until the user is ready to 
send it to the trading partners.

Another option might be to translate all of the proprietary data to be sent to trading partners at 
once and store them all in a single file. Remember that an EDI document starts with a predefined 
header and ends with a trailer. Multiple documents can be sent to Information Exchange as a 
single file. Expedite Base for Windows separates the individual documents so that they are sent 
to the proper destination mailboxes.

The application programmer must make a decision about when the translator is invoked to 
translate from proprietary format to EDI documents. The application programmer must also 
build the proper Expedite Base for Windows input file so that the EDI data can be properly sent.

       NETWORK
Application                  Translator Expedite

Base for 
Windows

Expedite
Base for 
Windows

Translator Application
141



Expedite Base for Windows Programming Guide

Examples of sending and receiving EDI data
Examples of sending and receiving EDI data 
The following examples illustrate how you can use SENDEDI and RECEIVEEDI commands to send 
and receive EDI data.

Example 1
The XYZ supply store has an inventory and ordering system. When the inventory of a particular 
product is low, the system automatically generates an electronic purchase order to order more. 
The XYZ company uses the ANSI X12 purchase order standard (the 850 transaction) when 
formatting its electronic purchase orders. An EDI translator is used to translate the data from its 
format in the inventory and ordering system to the 850 standard format. The translator also builds 
the proper levels of EDI envelopes including the outermost ISA-IEA envelope.

During the day, the system continues to create electronic purchase orders destined for different 
trading partners. All of the data is stored in a single PC file. At the end of the day, the system runs 
Expedite Base for Windows to send the data to Information Exchange. The following is the 
format for the input file:

Sample input file basein.msg
SENDEDI FILEID(ORDERS.FIL);
RECEIVEEDI FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

Sample output file baseout.msg
AUTOSTART SESSIONKEY(8DKJRY35);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(8DKJRY35) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI FILEID(ORDERS.FIL);
SENT UNIQUEID(51219934) LENGTH(791) ACCOUNT(AAAA) USERID(AAAA01) 
EDITYPE(X12)
DESTINATION(AAAA   AAAA01) QUALIFIER(ZZ) CONTROLNUM(000022223) 
CLASS(#E2)
MSGNAME(00022223) MSGSEQNO(00001);
SENT UNIQUEID(13352145) LENGTH(856) ACCOUNT(BBBB) USERID(BBBB01) 
EDITYPE(X12)
DESTINATION(BBBB   BBBB01) QUALIFIER(ZZ) CONTROLNUM(000022224) 
CLASS(#E2)
MSGNAME(00022224) MSGSEQNO(00002);
SENT UNIQUEID(66864241) LENGTH(543) ACCOUNT(CCCC) USERID(CCCC01) 
EDITYPE(X12)
DESTINATION(CCCC   CCCC01) QUALIFIER(ZZ) CONTROLNUM(000022225) 
CLASS(#E2)
MSGNAME(00022225) MSGSEQNO(00003);
RETURN(00000);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);
142



Chapter 7. Sending and receiving EDI data

Examples of sending and receiving EDI data
Results:
In this example, there were three purchase orders sent to Information Exchange. Each purchase 
order has an ISA-IEA envelope and each went to a different trading partner. The first went to 
account aaaa user ID aaaa01, the second went to account bbbb user ID bbbb01, and the third 
went to account cccc user ID cccc01.

A CLASS parameter was not specified in the SENDEDI command. The result is that a default user 
class of #E2 was assigned to these files. This is different from the SEND command where no 
specified user class results in a blank user class for the file.

System error messages were requested, but none were received.

Example 2
In this example, there is a problem with the transmission from the XYZ supply store one night. 
This example shows what happens if the XYZ store uses session-level recovery. Session-level 
recovery means that Information Exchange does not put any data in your trading partners’ 
mailboxes until there is a successful session end. For additional information, see “Using session-
level recovery” on page 130. The following input file is the same as the input file in example 1.

Sample input file basein.msg
SENDEDI FILEID(ORDERS.FIL);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

Sample output files
baseout.msg
SESSIONEND(26805)
ERRDESC(Lost carrier.);

tempout.msg
AUTOSTART SESSIONKEY(7DYEHEKF);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(7DYEHEKF) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI FILEID(ORDERS.FIL);
SENT UNIQUEID(62323675) LENGTH(791) ACCOUNT(AAAA) USERID(AAAA01) 
EDITYPE(X12)
DESTINATION(AAAA   AAAA01) QUALIFIER(ZZ) CONTROLNUM(000022223) 
CLASS(#E2)
MSGNAME(00022223) MSGSEQNO(00001);
SENT UNIQUEID(35245245) LENGTH(856) ACCOUNT(BBBB) USERID(BBBB01) 
EDITYPE(X12)
DESTINATION(BBBB   BBBB01) QUALIFIER(ZZ) CONTROLNUM(000022224) 
CLASS(#E2)
MSGNAME(00022224) MSGSEQNO(00002);
RETURN(26805)
ERRDESC(Lost carrier.)
ERRTEXT(EXPLANATION:  The carrier was lost during data transmission.)
ERRTEXT(USER RESPONSE:  Retry the program. If the problem persists,)
ERRTEXT(contact the Help Desk.);
143



Expedite Base for Windows Programming Guide

Examples of sending and receiving EDI data
Results:  
In this example, only two of the three purchase orders were sent to Information Exchange before 
the session ended unexpectedly due to lost carrier. This is apparent because the output file 
tempout.msg shows two SENT records. Each purchase order has its own ISA-IEA envelope and is 
destined for a different trading partner. Because the sender is using session-level recovery, Infor-
mation Exchange discards the two purchase orders that it received since the session did not 
complete successfully. The next time Expedite Base for Windows has a session with Information 
Exchange, it starts sending from the beginning of basein.msg and resends all of the data previ-
ously sent. When the session ends successfully, Information Exchange puts the purchase orders 
in the three trading partners’ mailboxes.

Example 3
In this example, there is a problem with the transmission from the XYZ supply store one night 
and the XYZ store used checkpoint-level recovery. When checkpoint-level recovery is used, 
checkpoints are taken during the data transmission. If a session ends unexpectedly, then when 
Expedite Base for Windows next re-establishes a connection, the data transmission continues at 
the previous checkpoint. This is in contrast to session-level recovery where the data transmission 
starts at the beginning. See “Using checkpoint-level, file-level, and user-initiated recovery” on 
page 115, for additional information. The following input file is the same as the input file in 
example 1.

Sample input file basein.msg
SENDEDI FILEID(ORDERS.FIL);
RECEIVE FILEID(ERRORS.FIL) ACCOUNT(*SYSTEM*) USERID(*ERRMSG*);

Sample output file baseout.msg
AUTOSTART SESSIONKEY(UDIDGJHH);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(UDIDGJHH) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI FILEID(ORDERS.FIL);
SENT UNIQUEID(62323675) LENGTH(791) ACCOUNT(AAAA) USERID(AAAA01) 
EDITYPE(X12)
DESTINATION(AAAA   AAAA01) QUALIFIER(ZZ) CONTROLNUM(000022223) 
CLASS(#E2)
MSGNAME(00022223) MSGSEQNO(00001);
SENT UNIQUEID(35245245) LENGTH(856) ACCOUNT(BBBB) USERID(BBBB01) 
EDITYPE(X12)
DESTINATION(BBBB   BBBB01) QUALIFIER(ZZ) CONTROLNUM(000022224) 
CLASS(#E2)
MSGNAME(00022224) MSGSEQNO(00002);
RETURN(26805)
ERRDESC(Lost carrier.)
ERRTEXT(EXPLANATION:  The carrier was lost during data transmission.)
ERRTEXT(USER RESPONSE:  Retry the program. If the problem persists,)
ERRTEXT(contact the Help Desk.);

Results: 
In this example, only two of the three purchase orders were sent to Information Exchange before 
the session ended unexpectedly due to lost carrier. This is apparent because the output file 
baseout.msg shows two SENT records. Each purchase order has its own ISA-IEA envelope and is 
144



Chapter 7. Sending and receiving EDI data

Examples of sending and receiving EDI data
destined for a different trading partner. Since the sender is using checkpoint-level recovery, Infor-
mation Exchange delivers the two purchase orders to the trading partners’ mailboxes even 
though the session did not complete successfully. The next time Expedite Base for Windows has 
a session with Information Exchange, it starts sending from where it left off, which is the third 
ISA envelope in the file orders.fil.

Example 4
The ABC company trades EDI data with multiple trading partners. ABC uses an EDI translator 
to translate their system data to EDI standard data when they send documents and to translate 
from EDI standard data to their system data when they receive documents.

Each time the translator creates an electronic document, it stores the data in a separate PC file. 
All files are stored in the directory called EDI.

Different translators have different requirements for the data they work with. For example, 
ABC’s translator will run into difficulties if it is expecting EDI standard data but receives non-
EDI data instead. It also expects the received EDI standard data to be formatted with CRLF at the 
end of each segment. ABC can structure its input file commands to handle these requirements.

Sample input file basein.msg
SENDEDI FILEID(ORDER1.FIL);
SENDEDI FILEID(ORDER2.FIL);
SENDEDI FILEID(ORDER3.FIL);
RECEIVEEDI FILEID(EDIDATA.FIL) CLASS(EDI) EDIONLY(Y) MULTFILES(Y) 
EDIOPT(Y);

Sample output file baseout.msg
AUTOSTART SESSIONKEY(73H4GFKS);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(73H4GFKS) IEVERSION(04)
IERELEASE(06);
RETURN(00000);
SENDEDI FILEID(ORDER1.FIL);
SENT UNIQUEID(05738930) LENGTH(1265);
RETURN(00000);
SENDEDI FILEID(ORDER2.FIL);
SENT UNIQUEID(67323552) LENGTH(765);
RETURN(00000);
SENDEDI FILEID(ORDER3.FIL);
SENT UNIQUEID(08747849) LENGTH(3566);
RETURN(00000);

RECEIVEEDI FILEID(EDIDATA.FIL) CLASS(EDI) EDIONLY(Y) MULTFILES(Y) 
EDIOPT(Y);
RECEIVED ACCOUNT(XXXX) USERID(XXXX01) RECEIVER(ACT1    DEPT01)
RECVQUAL(01) SENDER(ACT2    DEPT02) SENDQUAL(01) CONTROLNUM(000022228)
CLASS(DATA) CHARGE(1) LENGTH(2741) FILEID(EDIDATA.FIL) MSGDATE(040701)
MSGDATELONG(20040701) MSGTIME(020132) MSGSEQO(489028)
MSGSEQO(489028) SESSIONKEY(73H4GFKS) DELIMITED(N) SYSNAME(EBWIN9ST)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(X12) 
SENDERFILE(UPDATE.A)
SENDERLOC(EXPBASE) FILEDATE(040602) FILEDATELONG(20040602)
FILETIME(102544) RECFM(????) RECLEN(00000) RECDLM(E)
UNIQUEID(28700977) SYSTYPE(11) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);
145



Expedite Base for Windows Programming Guide

Examples of sending and receiving EDI data
AUTOEND;
RETURN(00000);
SESSIONEND(00000);

Results: 
Three files containing EDI data were sent to three trading partners. The SENDEDI command does 
not require a destination address. The address is contained within the EDI envelope in the data.

The RECEIVEEDI command was issued to receive files from user class edi and store the data in file 
edidata.fil.

MULTFILES(Y) indicates to Expedite Base for Windows that if more than one file is received, the 
data from each received file would be stored in a separate PC file. The first received file would 
be stored in edidata.fil, the second file in edidata.fil.002, the third in edidata.fil.003, and so on. In 
the example, only one file was received. 

EDIONLY(Y) indicates to Expedite Base for Windows that only EDI files should be received with 
this command. Information about whether this file is EDI or not is stored in the CDH. Without 
this parameter, any file in the mailbox with a user class of edi would be received. If a non-EDI 
file is received and read by the ABC translator it could cause problems. This parameter helps to 
avoid such a situation.

EDIOPT(Y) indicates to Expedite Base for Windows to insert CRLF after each EDI segment.

Example 5
The ABC company in Example 4 identifies trading partners by their DUNS numbers. When the 
translator creates the ISA envelope, it uses the DUNS number as the address of the trading 
partner. Information Exchange uses accounts and user IDs to identify individual mailboxes. 
“Using EDI destination tables” on page 105 describes how Expedite Base for Windows uses 
translate tables or EDI destination tables to translate a non-network address to an account and 
user ID address.

This example shows a sample ISA envelope and how Expedite Base for Windows uses translate 
tables to get the account and user ID address. Below is part of a sample ISA header. Most of the 
information in this sample ISA is replaced by xxx since it is not important to this example. What 
is important are the sender and receiver IDs.

The ABC company is the sender. ABC’s DUNS number is 1111111111. Its trading partner’s 
DUNS number is 2222222222.

Expedite Base for Windows uses the ID qualifiers to determine how to translate the ID. The 
translation is done using an EDI destination table with the name TTABLxx.TBL, where the xx is 
replaced by the ID qualifier. In this example, Expedite Base for Windows uses the EDI desti-
nation table TTABL01.TBL to translate the trading partner’s DUNS number to an account and 
user ID. The following example is an EDI destination table.

ISA*xx*xxxxxxxxxx*xx*xxxxxxxxxx*01*1111111111     *01*2222222222   *xxxxxx*;

Sender ID
Qualifier

Sender
ID

Receiver ID
Qualifier

Receiver
ID
146



Chapter 7. Sending and receiving EDI data

Examples of sending and receiving EDI data
EDIDEST(2222222222) ACCOUNT(acct) USERID(partner);

Using this information, Expedite Base for Windows sends this EDI data to the account acct and 
user ID partner.
147



Expedite Base for Windows Programming Guide

Examples of sending and receiving EDI data
148



© Copyright GXS, Inc. 1998, 2005
Chapter 8
Using Expedite Base for Windows profile 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
commands

To use Expedite Base for Windows, you need to create an Expedite Base for Windows profile. 
This chapter explains how to create profiles, explains the command syntax, and describes the 
profile commands and response records. It also explains how to change your network and Infor-
mation Exchange passwords and discusses the Extended Security Option (ESO).

Creating profiles 
To create a profile, enter profile commands in basein.pro using a text editor. When you run the 
iebase program, Expedite Base for Windows echoes the profile commands in basein.pro, along 
with response records and their associated return codes, to the profile response file (baseout.pro). 
You can review baseout.pro to verify successful completion of the profile commands.

Once these commands complete successfully, Expedite Base for Windows stores their values in 
an internal profile called basein.pro. Therefore, these values remain in effect until you change 
them in basein.pro. You cannot change these values by deleting them from basein.pro or erasing 
basein.pro. You must use a profile command in basein.pro to change them. For example, if you 
do not want Expedite Base for Windows to dial the second telephone number you specified for 
the network, change the value of the DIALCOUNT2 parameter to 0. If you simply remove the 
DIALCOUNT2 parameter from basein.pro, it will not change iebase.pro and you will not get the 
desired result. If you want to remove a parameter value from the profile, you can change the 
parameter to specify a value of blank.

NOTE:  The command syntax examples in this chapter show required and default 
parameters in boldface, and parameter values in italics.
149



Expedite Base for Windows Programming Guide
Working with profile commands
Use the following commands to create and maintain your profile.

The profile commands are:

■ DIAL, page 151

Use this command to enter port, modem, and telephone (dial) information to connect to the 
network if you are using Expedite Base for Windows.

■ IDENTIFY, page 156

Use this command to set up the fields in the profile related to your account, user ID, and 
password information.

■ SESSION, page 159

Use this command to specify session-related information, such as exit key and file overwrite.

■ SSL, page 161

Use this command to enable SSL communication.

■ TCPCOMM, page 162

Use this command to specify the connection name for TCP/IP communications.

■ TRACE, page 163

Use this command to specify the information that Expedite Base for Windows records in the 
trace file during a session. Possible traces are BASE, CNNCT, DISPLAY, IOFILE, LINK, MODEM, 
AND PROTOCOL.

■ TRANSMIT, page 165

Use this command to specify the level of recovery Expedite Base for Windows will use to 
control the amount of data sent between checkpoints. You can also use it to specify whether 
Expedite Base for Windows starts and ends an Information Exchange session automatically.

The following sections provide detailed information on each of these commands.
150



Chapter 8. Using Expedite Base for Windows profile commands

DIAL command
DIAL command 
Use the DIAL command to specify port, modem, and telephone (dial) information to connect to 
the AT&T Global Network when using asynchronous communications. You can enter up to five 
sets of phone numbers, connect and disconnect scripts, dial counts, and data rates. You correlate 
the members of the set by specifying a number from 1 to 5 at the end of the parameter.

Syntax
dial

phonen(phone numberN) baudraten(data rateN) dialcountn(dial countN)
port(port) modeminit(modem initialization string)
modemreset(modem reset string) cnnctscr(connect script)
discnnctscr(disconnect script) initscr(initialization script)
resetscr(reset script) cnnctscrn(connect scriptN)
discnnctscrn(disconnect scriptN) manualdial(n|y)
netinit(secondary network initialization string)
netpw(secondary network password) netaddr(secondary network address)
cycle(cycle) wait(wait) escape(escape sequence) phonetype(phone type)
dclversion(1|2) usern(user defined variable);

DIAL command example
The following is an example of the DIAL command:

dial port(1) escape(9,)
phone1(1234567) baudrate1(2400) dialcount1(2)
phone2(2345678) baudrate2(2400) dialcount2(0);

Results: Expedite Base for Windows will attempt to communicate through port 1. Expedite Base 
for Windows will dial 9 1234567 at the data rate of 2400 bps. It will dial up to two times to make 
the connection. Because the dial count specified in DIALCOUNT2 is 0, the phone number 2345678 
will not be dialed.

Parameters
phonen

Indicates the telephone number Expedite Base for Windows uses to dial the network. If you 
are using asynchronous dial, you must specify at least one telephone number in the profile. 
The total number you can specify is five. A telephone number can contain control characters 
recognized by your modem in a dial command. For example, you can include a comma in 
your telephone number to indicate a pause if you are using a Hayes-compatible modem. This 
value is substituted for the %PHONE% variable in the connect script. Use 1 to 36 alphanu-
meric characters. The valid values for n are 1 to 5.

baudraten
Indicates the data rate (in bits per second) for communication between Expedite Base for 
Windows and the modem. This value is substituted for the %BAUD% variable in the connect 
script. The valid values are:

300
1200
2400
4800
9600
19200
151



Expedite Base for Windows Programming Guide

DIAL command
38400
56000
57600

The valid values for n are 1 to 5. The default value is 2400.    

dialcountn
Indicates the maximum number of times Expedite Base for Windows dials the corre-
sponding telephone number. The valid values are 0 to 9. If you place 0 in this parameter, 
Expedite Base for Windows does not dial the corresponding telephone number. The default 
value is 2.

The valid values for n are 1 to 5.

port
Indicates the communications port on your PC that the modem uses to connect to Infor-
mation Exchange. This value is substituted for the %PORT% variable in the connect script. 
The valid values are 1 to 4. The default value is 1.

modeminit
Indicates the initialization string Expedite Base for Windows uses to initialize the modem. 
This value is substituted for the %INIT% variable in the connect script. Use up to 40 
characters. The default value is ATL1X1V1Q0&C1&D2.

modemreset
Indicates the string Expedite Base for Windows uses to reset the modem to the factory 
configuration, or to some other known state. This value is substituted for the %RESET% 
variable in the connect script. Use up to 8 characters. The default is AT&F.

cnnctscr
Indicates the modem script Expedite Base for Windows uses to connect to the network. The 
connect script is run each time a phone number is dialed. The connect script is used to dial 
the phone number and establish the connection. Use a valid Expedite Base for Windows 
filename, 1 to 12 characters. The default value is cnnct.scr.

Place this script file in the current directory or in the path you specify in the IEPATH 
parameter of the SESSION command in basein.pro.

discnnctscr
Indicates the modem script Expedite Base for Windows uses to return the modem to an on-
hook state and reset the modem configuration after disconnecting from the network. The 
disconnect script is run each time Expedite Base for Windows completes a dial process. The 
disconnect script is used to disconnect from the network and hang up the phone. Use a valid 
Expedite Base for Windows filename, 1 to 12 characters. The default value is discnnct.scr.

NOTE: The maximum data rate depends on the telephone number you dial and 
the data rate of the modem. Consult your marketing representative for more 
information on the data rate.

NOTE: Do not specify a reserved file name. For more information on reserved 
file names, see Appendix C, “Reserved file names and user classes.’’
152



Chapter 8. Using Expedite Base for Windows profile commands

DIAL command
Place this script file in the current directory or in the path you specify in the IEPATH 
parameter of the SESSION command in basein.pro.

initscr
Indicates the modem script Expedite Base for Windows uses to initialize the modem. 
Normally, Expedite Base for Windows uses CNNCT.SCR to initialize the modem, but you 
can provide a separate script to handle the modem initialization. Expedite Base for Windows 
uses your script the first time it tries to access the modem but not on redials. Use a valid 
Expedite Base for Windows filename, 1 to 12 characters.

Place this script file in the current directory or in a path you specify in the IEPATH parameter 
of the SESSION command in basein.pro.

resetscr
Indicates the modem script Expedite Base for Windows uses to reset the modem. Normally, 
Expedite Base for Windows uses DISCNNCT.SCR to reset the modem, but you can provide 
a separate script to handle modem reset. Expedite Base for Windows uses your script after 
the last time it disconnects the modem, but not on redials. Use a valid Expedite Base for 
Windows filename, 1 to 12 characters.

Place this script file in the current directory or in a path you specify in the IEPATH parameter 
of the SESSION command in basein.pro.

cnnctscrn
Indicates the connection scripts Expedite Base for Windows uses for different telephone 
numbers. For example, if PHONE1 requires PAD connect processing and PHONE2 does not, 
you can specify different connect scripts for each phone number using CNNCTSCR1 and 
CNNCTSCR2 parameters. Use a valid Expedite Base for Windows filename, 1 to 12 
characters. If you do not use this parameter, the default is the value you specify for the 
CNNCTSCR parameter.

Place this script file in the current directory or in a path you specify in the IEPATH parameter 
of the SESSION command in basein.pro.

The valid values for n are 1 to 5.

discnnctscrn
Indicates the disconnect scripts Expedite Base for Windows uses for different telephone 
numbers. For example, if PHONE1 requires PAD disconnect processing and PHONE2 does not, 
you can specify different disconnect scripts for each phone number using DISCNNCTSCR1 and 
DISCNNCTSCR2 parameters. Use a valid Expedite Base for Windows filename, 1 to 12 
characters. If you do not use this parameter, the default is the value you specify for the 
DISCNNCTSCR parameter.

NOTE: Do not specify a reserved file name. For more information on reserved 
file names, see Appendix C, “Reserved file names and user classes.’’

NOTE: Do not specify a reserved file name. For more information on reserved 
file names, see Appendix C, “Reserved file names and user classes.’’

NOTE: Do not specify a reserved file name. For more information on reserved 
file names, see Appendix C, “Reserved file names and user classes.’’
153



Expedite Base for Windows Programming Guide

DIAL command
Place this script file in the current directory or in a path you specify in the IEPATH parameter 
of the SESSION command in basein.pro.

The valid values for n are 1 to 5.

manualdial
Indicates whether you are using a manual dial modem.

netinit
Indicates the initialization string Expedite Base for Windows uses to access the network 
through a secondary network. This value is substituted for the %NETINIT% variable in the 
connect script. Use up to 40 characters.

netpw
Indicates the secondary network password when you access the network through a 
secondary network. This value is substituted for the %NETPW% variable in the connect 
script. If you specify ENCRYPT(Y) on the IDENTIFY command, you must encrypt this 
password and it must be 8 characters long. Use up to 8 alphanumeric characters.

netaddr
Indicates the secondary network address when you access the network through a secondary 
network. This value is substituted for the %NETADDR% variable in the connect script. Use up 
to 15 alphanumeric characters.

cycle
Indicates the number of times Expedite Base for Windows redials a list of telephone 
numbers after an unsuccessful attempt to connect to the network. The valid values are 0 to 9. 
The default value is 0.

wait
Indicates the time Expedite Base for Windows waits between connect cycles. The format for 
this field is hhmm. All information entered is right-justified, and padded on the left with 
zeros. The default value is 0000.

escape
Indicates a character sequence to obtain an outside line from a local PBX. The escape 
sequence can contain control characters recognized by your modem in a DIAL command. For 
example, you can include a comma in your escape sequence to indicate a pause if you use a 
Hayes-compatible modem. This value is substituted for the %ESC% variable in the connect 
script. Use 1 to 8 alphanumeric characters.

phonetype
Indicates your telephone type. This value is substituted for the %PTYPE% variable in the 
connect script.

dclversion
Indicates which Data Control Layer (DCL) block size will be used.

n Expedite Base for Windows uses the CNNCTSCR and DISCNNCTSCR parameters 
to manage the autodial connection. This is the default.

t Expedite Base for Windows waits for the user to establish a connection.

p Indicates a pulse dial telephone (rotary dial).

t Indicates a touch-tone telephone. This is the default.
154



Chapter 8. Using Expedite Base for Windows profile commands

DIAL command
When you set the data rate to 2400 bps or lower, Expedite Base for Windows communicates 
with the network gateway using a smaller DCL block size.

At data rates higher than 2400 bps, Expedite Base for Windows can use a larger DCL block 
size. If you specify DCLVERSION(2), which is the default, Expedite Base for Windows 
automatically uses the larger DCL block size if the data rate is higher than 2400 bps and the 
network gateway supports the larger DCL block size. 

This reduces the number of acknowledgments between Expedite Base for Windows and the 
network gateway, thereby improving throughput. If you want to prevent use of the larger 
DCL block size, specify DCLVERSION(1).

usern
Indicates a user-defined value that will be substituted for a variable in a modem script.

1 Indicates that the smaller DCL block size will be used.

2 Indicates that the larger DCL block size is to be used when the data rate is higher 
than 2400 bps and the network gateway supports the larger DCL block size. This 
is the default.

user 1 Value substituted for %USER1% in the modem script. Use 1 to 32 characters.

user 2 Value substituted for %USER2% in the modem script. Use 1 to 32 characters.

user 3 Value substituted for %USER3% in the modem script. Use 1 to 32 characters.
155



Expedite Base for Windows Programming Guide

IDENTIFY command
IDENTIFY command 
Use the IDENTIFY command to set up the network and Information Exchange account, user IDs, 
passwords, and other information.

Syntax
identify

inpassword(network password)  ninpassword(new network password)
ieaccount(IE account)  ieuserid(IE user ID)
iepassword(IE password)  niepassword(new IE password)
product(product)  timezone(time zone)
encrypt(n|y);
keyringfile(KDB file) keyringpassword(password) 
OR
keyringfile(KDB file) keyringstashfile(application ID);

IDENTIFY command example
The following is an example of the IDENTIFY command:

identify inaccount(acct) inuserid(user01) inpassword(mypass)
ieaccount(acct) ieuserid(user01) iepassword(mypass)
keyringfile(keyring.kdb) keyringpwd(mykeypswd);

Results: The user has the same account and user ID for both the network and Information 
Exchange, as well as the same password. Expedite Base for Windows uses this information to log 
on to the network and start a session with Information Exchange.

Parameters
inaccount

Indicates the network account that is required when using asynchronous communication. 
Use 1 to 8 alphanumeric characters.

inuserid
Indicates the network user ID that is required when using asynchronous communication. Use 
1 to 8 alphanumeric characters.

inpassword
Indicates the network password that is required when using asynchronous communication. 
Use 1 to 8 alphanumeric characters, if you specify ENCRYPT(N). If you specify ENCRYPT(Y), 
this value must be 8 characters long and encrypted.

ninpassword
Indicates the new network password. Expedite Base for Windows changes the network 
password on the next network connection, even if the Information Exchange session has an 
error. Use 1 to 8 alphanumeric characters, if you specify ENCRYPT(N). If you specify 
ENCRYPT(Y), this value must be 8 characters long and encrypted.

For more information on changing passwords, see “Changing passwords” on page 173.

ieaccount
Indicates the Information Exchange account. You do not need to specify this parameter if 
you use the START command in basein.msg. Otherwise, this parameter is required. Use 1 to 8 
alphanumeric characters.
156



Chapter 8. Using Expedite Base for Windows profile commands

IDENTIFY command
ieuserid
Indicates the Information Exchange user ID. You do not need to specify this parameter if you 
use the START command in basein.msg. Otherwise, this parameter is required. Use 1 to 8 
alphanumeric characters.

iepassword
Indicates the Information Exchange password. Use 1 to 8 alphanumeric characters, if you 
specify ENCRYPT(N). If you specify ENCRYPT(Y), this value must be 8 characters long and 
encrypted.

niepassword
Indicates the new Information Exchange password. Expedite Base for Windows changes the 
password upon the successful completion of the next Information Exchange session. If there 
is an error in the Information Exchange session, Expedite Base for Windows does not 
change the password.

If you specify ENCRYPT(N), this value can be 1 to 8 alphanumeric characters. If you specify 
ENCRYPT(Y), this value must be 8 characters long and must be encrypted.

For more information on changing passwords, see “Changing passwords” on page 173.

product
Indicates the name of the Information Exchange product on your Product Selection menu. 
Use 1 to 8 alphanumeric characters. The default is infoexch.

timezone
Indicates your local time zone. You can enter one of the time zone codes listed here, or you 
can specify an offset from Greenwich mean time (GMT) by indicating the number of hours 
and minutes east or west of the Greenwich meridian. The format for specifying the hours and 
minutes is ehhmm or whhmm, where:

For example, to specify Eastern Daylight Time, you can enter either edt or w0400, where w 
indicates west, and 0400 indicates 4 hours and 0 minutes.

Type: To indicate:

e East
w West
hh hours
mm minutes

Type: To indicate:

ahs W1000 (Hawaii standard time)
ast W0400 (Atlantic standard time)
bst E0100 (British summer time)
cdt W0500 (Central daylight time)
cst W0600 (Central standard time)
ead E1000 (Eastern Australia daylight time)
edt W0400 (Eastern daylight time)
emt E0200 (Eastern Mediterranean time)
est W0500 (Eastern standard time)
157



Expedite Base for Windows Programming Guide

IDENTIFY command
Use 1 to 5 alphanumeric characters. The default is gmt.

encrypt
Indicates whether passwords in the IDENTIFY and START commands are encrypted. Setting 
this parameter does not affect the keyringpassword parameter. 

keyringfile
The name of the kdb file that contains the certificate. This applies to TCP/IP communication 
performed with SSL enabled. Either keyringpassword or keyringstashfile is required with this 
parameter.

keyringpassword 
The kdb file password. This value is not case sensitve. It can be from 1 to 128 characters in 
length. If you use this parameter, do not use keyringstashfile.

keyringstashfile 
The name of the application that you defined in kKEYMAN application database. This value is 
associated to a specific certificate. If you use this parameter, do not use keyringpassword.

The valid values are the values that you used when you defined the application ID in DCM. This 
field can be from 1 to 100 characters in length.

gmt E0000 (Greenwich mean time)
jst E0900 (Japanese standard time)
mdt W0600 (Mountain daylight time)
mst W0700 (Mountain standard time)
pdt W0700 (Pacific daylight time)
pst W0800 (Pacific standard time)
wed E0200 (Western Europe daylight time)
wes E0100 (Western Europe standard time)
ydt W0800 (Alaska daylight time)
yst W0900 (Alaska standard time)

n Passwords are not encrypted. This is the default.

y Passwords are encrypted.

NOTE: If you specify y, you must encrypt all passwords (except the key ring 
password) before entering them in a command. In addition, be sure to specify the 
ENCRYPT(Y) parameter before specifying any password parameters. If Expedite 
Base for Windows reads an encrypted password before reading the ENCRYPT(Y) 
parameter, it will not know that the password is encrypted and will not be able to 
properly process it. See “Encrypting and decrypting passwords” on page 175 for 
more information on password encryption.

Type: To indicate:
158



Chapter 8. Using Expedite Base for Windows profile commands

SESSION command
SESSION command 
Use the SESSION command to change the default session information. Use this to:

■ Specify a different exit key
■ Identify a different directory where Expedite Base for Windows will find program files
■ Not display the session picture
■ Not display session status
■ Identify a program that runs after Expedite Base for Windows completes
■ Tell Expedite Base for Windows whether or not to overwrite existing files when receiving 

from Information Exchange

Syntax
session

exitkey(exit key) iepath(IE path) picture(y|n)
status(y|n) overwrite(y|n);

SESSION command example
The following is an example of the SESSION command:

session exitkey(10) overwrite(n);

Results: This SESSION command indicates that the user can press the F10 key to exit the 
program. In addition, when files are received, they will not overwrite any existing files with the 
same name.

Parameters
exitkey

This parameter is not used anymore, and Expedite Base for Windows ignores it.

iepath
Indicates the directory in which the Expedite Base for Windows program files are installed. 
See “Reserved file names for IEPATH parameter” on page 445 for a list of the program files 
affected by this parameter. The default is the current directory.

picture
This parameter is not used anymore, and Expedite Base for Windows ignores it.

status
Indicates whether Expedite Base for Windows sends status information to a controlling 
application if one exists.

y Send status information to a controlling application if one exists. This is the default.

n Do not send status information to a controlling application if one exists.
159



Expedite Base for Windows Programming Guide

SESSION command
overwrite
Indicates whether or not Expedite Base for Windows should overwrite existing files when 
receiving data from Information Exchange.

y If the file specified in the FILEID parameter of the RECEIVE or RECEIVEEDI command 
already exists on the PC, overwrite that file with the data received from Information 
Exchange. This is the default.

Note: If Expedite Base for Windows receives two files with the same name in the 
same session, the data from the second file is appended to the first file.

n Do not overwrite the file specified in the FILEID of the RECEIVE or RECEIVEEDI 
command. If the file already exists, then the data received from Information 
Exchange will be appended to the existing file.

Note: If an existing file or newly received file contains end-of-file (EOF) 
characters, some editors may not be able to read the entire file. For more infor-
mation, see the REMOVEOF parameter of the RECEIVE and RECEIVEEDI commands.
160



Chapter 8. Using Expedite Base for Windows profile commands

SSL command
SSL command 
Use the SSL command to enable secure socket layer (SSL) communication.

Syntax
ssl

enablessl(y|n);

Parameters
enablessl

Indicates whether SSL should be enabled for sending and receiving files.

y Enable SSL.

n Do not enable SSL.
161



Expedite Base for Windows Programming Guide

TCPCOMM command
TCPCOMM command 
Use the TCPCOMM command to specify parameters for TCP/IP communications.

Syntax
tcpcomm

dialprofile(dialer login profile name) dialcount(dial count)
timeout(minutes);

Parameters
dialprofile

Indicates the name of the AT&T Net Client login profile to be used. For TCP/IP dial, this is 
a required parameter and the login profile must be created in the AT&T Net Client prior to 
using TCP/IP dial communications with Expedite Base for Windows. For TCP/IP leased 
line, this parameter is ignored. Use 1 to 18 alphanumeric characters.

dialcount
Indicates the number of times each phone number specified in the AT&T Net Client is tried. 
Valid values are 1 to 9. The default value is 3. For TCP/IP dial, this is an optional parameter. 
For TCP/IP leased line, this parameter is ignored.

timeout
Indicates the maximum number of minutes that Expedite Base for Windows should wait 
when communicating with Information Exchange. If this activity timeout is reached before 
Expedite Base for Windows can send or receive new data from Information Exchange, 
Expedite Base for Windows will assume that the connection has been dropped. In Windows 
95, Windows 98, and Windows NT environments, Expedite Base for Windows is notified 
right away and the dropped connection is detected before the activity timeout is reached. If 
the WAIT parameter is specified on the RECEIVE or RECEIVEEDI command and is greater than 
the value specified for timeout on the TCPCOMM command, the TCPCOMM timeout is used. 
The valid values are 2 to 10. The default value is 10.
162



Chapter 8. Using Expedite Base for Windows profile commands

TRACE command
TRACE command 
Use the TRACE command to specify what information the trace file records during a session. If 
you request BASE, CNNCT, DISPLAY, IOFILE, MODEM, PROTOCOL, or LINK, Expedite Base for 
Windows places the trace information in the trace file (iebase.trc).

Syntax
trace

cnnct(n|y) display(n|y) modem(n|y)
protocol(n|y) link(n|y) base(n|y) iofile(n|y);

TRACE command example 
The following is an example of the TRACE command:

trace protocol(y) link(y);

Results: During the session, Information Exchange protocol trace information and the data 
control layer information is written to the iebase.trc file.

Parameters
cnnct

Indicates whether the trace file contains syntax information for the modem script. Use this 
trace if you have problems modifying a modem script.

display
Indicates whether the trace file contains the display status file processing information. Use 
this trace if you have problems modifying display.scr.

modem
Indicates whether the trace file contains the commands sent to the modem and the modem 
responses. Use this trace if your modem is not working properly.

protocol
Indicates whether the trace file contains Information Exchange protocol information. The 
Customer Care Help Desk uses this trace for problem determination.

NOTE:  If you do not request tracing, Expedite Base for Windows still creates trace 
files but places minimal information in them.

n Do not include modem script information in the trace file. This is the default.

y Include modem script information in the trace file.

n Do not include display.scr processing in the trace file. This is the default.

y Include display.scr processing in the trace file.

n Do not include the modem command information in the trace file. This is the 
default.

y Include the modem command information in the trace file.
163



Expedite Base for Windows Programming Guide

TRACE command
trace

link
Indicates whether Expedite Base for Windows traces data control layer information. 
Expedite Base for Windows places LINK protocol information in iebase.trc. The Customer 
Care Help Desk uses this trace for problem determination.

base
Indicates whether the trace file contains the Expedite Base for Windows module infor-
mation. The Customer Care Help Desk uses this trace for problem determination.

iofile
Use this trace if you are having problems creating or modifying basein.pro and basein.msg.

n Do not include the Information Exchange protocol information in the trace file. This 
is the default.

y Include the Information Exchange protocol information in the trace file.

n Do not include the link information in the trace file. This is the default.

y Include the link information in the trace file.

n Do not include the Expedite Base for Windows module information in the trace file. 
This is the default.

y Include the Expedite Base for Windows module information in the trace file.

n Do not include the command parsing information in the trace file. This is the 
default.

y Include the command parsing information in the trace file.
164



Chapter 8. Using Expedite Base for Windows profile commands

TRANSMIT command
TRANSMIT command 
Use the TRANSMIT command to specify the date and time of a delayed transmission, the 
blocksize, maximum messages, and other information. 

You also use this command to specify whether Expedite Base for Windows starts and ends an 
Information Exchange session automatically.

Syntax
transmit

autostart(y|n)  reconnect(reconnect)
autoend(y|n)  msgsize(message size)
commitdata(commit data)  delaytime(delay time)
delaydate(delay date)  blocksize(block size)
translate(translate table)  maxmsgs(max msg segments)
commtype(a|c|m|t|w) recovery(c|s|f|u);

TRANSMIT command example
The following is an example of the TRANSMIT command:

transmit commtype(a) reconnect(9) commitdata(15000) msgsize(5000)
delaytime(020000) delaydate(041001);

Results: Expedite Base for Windows will attempt to communicate with the network using 
asynchronous communication. At 2:00 a.m. on October 1, 2004, Expedite Base for Windows will 
dial the network. While sending data to Information Exchange, Expedite Base for Windows will 
take a commit checkpoint after every 15,000 bytes. If the connection to Information Exchange is 
lost during the transmission process, Expedite Base for Windows will attempt to reconnect a 
maximum of nine times.

Parameters
autostart

Indicates whether Expedite Base for Windows starts an Information Exchange session 
automatically. The only time it starts a session automatically is when it begins to process 
basein.msg. If you want to start multiple Information Exchange sessions in basein.msg, you 
must specify both AUTOSTART(N) and AUTOEND(N).

reconnect
Indicates the number of times Expedite Base for Windows attempts to reconnect to the 
network if it loses contact after a successful logon. The valid values are 0 to 9. The default 
value is 5.

y Start the Information Exchange session automatically. You do not include the 
Expedite Base for Windows START command in the message command file. This is 
the default.

n Do not start the Information Exchange session automatically. You must include the 
Expedite Base for Windows START command in the message command file.
165



Expedite Base for Windows Programming Guide

TRANSMIT command
autoend
Indicates whether Expedite Base for Windows sends an Information Exchange session end 
command when it finishes processing your command file. The only time it ends a session 
automatically is when it finishes processing basein.msg. If you want to start multiple Infor-
mation Exchange sessions in basein.msg, you must specify both AUTOSTART(N) and 
AUTOEND(N).

msgsize
Segments the data for sending. Your trading partner can take checkpoints only for the 
message size you specify with this parameter. If you use a large value, your trading partner 
cannot take frequent checkpoints.

Valid values are 1000 through 47000. The default is 47000 bytes for TCP/IP and 37000 for 
all other communication types. Lower values permit the receiving interface to complete 
more frequent checkpoints while receiving the data.

commitdata
This parameter applies only to checkpoint-level recovery. It is ignored for session-level, file-
level, or user-initiated recovery.

This parameter indicates the maximum number of bytes of data the program sends between 
checkpoints. For maximum efficiency, the COMMITDATA value should be an even multiple of 
the MSGSIZE value. Lower values can result in less retransmission of data if there is a 
communication failure. Higher values provide faster data transmission. Valid values are 
1000 to 141000. The default value is 141000.

delaytime
Indicates the time of day Expedite Base for Windows begins communication with Infor-
mation Exchange. The format is hhmmss. If you do not specify this parameter, but you 
specify the DELAYDATE parameter, Expedite Base for Windows begins communication at 
midnight (time 0000) on the delay date.

delaydate
Indicates the date Expedite Base for Windows begins communication with Information 
Exchange. The format is yymmdd. The default value is the current date.

blocksize
Indicates the size of the blocks Expedite Base for Windows breaks Information Exchange 
messages into for line transmission. Valid values are 256 to 3500 for asynchronous commu-
nication. The default value is 2000 for all COMMTYPEs. Do not change the default value 
unless you are frequently losing contact with Information Exchange.

y End the Information Exchange session automatically. You do not include the 
Expedite Base for Windows END command in the message command file. This is 
the default.

n Do not end the Information Exchange session automatically. You must include the 
Expedite Base for Windows END command in the message command file.

NOTE: MSGSIZE must be less than or equal to COMMITDATA.

NOTE: This value must be at least as large as the value you specified in 
MSGSIZE. 
166



Chapter 8. Using Expedite Base for Windows profile commands

TRANSMIT command
translate
Indicates the default table Expedite Base for Windows uses for ASCII-to-EBCDIC and 
EBCDIC-to-ASCII translation. Use 1 to 8 characters. Expedite Base for Windows appends 
the suffix .xlt to this value to produce the file name of the translate table. The translate table 
you specify must exist in the current directory or in the path specified by IEPATH in the 
SESSION command. If you do not specify a table, the default is the standard Information 
Exchange translate table.

maxmsgs
Maximum number of message segments the program can receive between Information 
Exchange commits. The valid values are 1 to 10. The larger the number specified, the more 
data Information Exchange sends to you without committing it. A lower number causes 
more frequent data commits. The default value is 10. Do not change the default unless you 
are frequently losing contact with Information Exchange.

commtype
Indicates the type of communication protocol Expedite Base for Windows uses to transmit 
data.

The default value is a.

recovery
Indicates what type of data recovery will be used.

NOTE: This value can be overwritten by the TRANSLATE parameter on the SEND, 
SENDEDI, RECEIVE, or RECEIVEEDI commands.

a Error-corrected asynchronous communication.

This option requires a connection with a network gateway. The gateway is 
commonly available in the United States but has limited availability in other 
countries. This is the default.

c TCP/IP communication.

This option uses Transmission Control Protocol/Internet Protocol to connect to the 
AT&T Global Network using the AT&T Net Client.

t TCP/IP leased line communication.

This option uses Transmission Control Protocol/Internet Protocol to connect to the 
AT&T Global Network via a leased line or to the AT&T Global Network or the 
Internet vianan existing TCP/IP connection.

NOTE: If you have access to a network gateway, you should specify 
COMMTYPE(A) for better performance.

c Checkpoint-level recovery. This is the default. For non-EDI data, see “Recovery 
levels” on page 60 for more information. For EDI data, see “Using checkpoint-level, 
file-level, and user-initiated recovery” on page 115 for more information.

s Session-level recovery. For non-EDI data, see “Using session-level recovery” on 
page 76 for more information. For EDI data, see “Using session-level recovery” on 
page 130 for more information.
167



Expedite Base for Windows Programming Guide

TRANSMIT command
f File-level recovery. For non-EDI data, see “Recovery levels” on page 60 for more 
information. For EDI data, see “Using checkpoint-level, file-level, and user-initiated 
recovery” on page 115 for more information.

u User-initiated recovery. This method requires the use of the COMMIT command 
(see“COMMIT command” on page 187). For non-EDI data, also see “Recovery 
levels” on page 60 for more information. For EDI data, also see “Using checkpoint-
level, file-level, and user-initiated recovery” on page 115 for more information.
168



Chapter 8. Using Expedite Base for Windows profile commands

TRANSMIT command
Working with profile response records
The profile response file (baseout.pro) contains an echo of the profile commands and their 
response records.

The profile response records are:

■ PROFILERC, page 170

This record indicates the completion of basein.pro.

■ RETURN, page 171

This record indicates the completion of a command in basein.pro.

■ WARNING, page 172

This record indicates a minor error that did not stop the command from completing, but that 
is an error of which you should be aware.

The following sections provide detailed information on each of these records.
169



Expedite Base for Windows Programming Guide

PROFILERC record
PROFILERC record 
The PROFILERC record is the last record in baseout.pro. The PROFILERC record indicates the 
processing of the profile commands is complete. A zero value indicates that all the profile 
commands completed successfully.

Syntax
PROFILERC(return code) ERRDESC(error description)
ERRTEXT(error text);  

Parameters
profilerc

Indicates whether Expedite Base for Windows processed the profile commands successfully.

If the return code is zero, the commands completed successfully. If the return code is not 
zero, the program displays an error number along with ERRDESC and ERRTEXT records. The 
program displays the same return code on the SESSIONEND record in baseout.msg. This 
parameter contains 5 numeric characters.

errdesc
Provides a short description of an error. If the return code is zero, this parameter is not in 
baseout.pro or baseout.msg. This parameter contains 1 to 76 alphanumeric characters.

errtext
Provides a detailed description of an error and may suggest steps to correct the problem. 
There may be multiple error text records in the file. If the return code is zero, this parameter 
is not in baseout.pro or baseout.msg. This parameter contains 1 to 76 alphanumeric 
characters.

NOTE:  There is only one PROFILERC record in each baseout.pro.
170



Chapter 8. Using Expedite Base for Windows profile commands

RETURN record
RETURN record 
The RETURN record indicates the completion of a command in basein.pro. A zero value indicates 
that the command completed successfully.

Syntax
RETURN(return) ERRDESC(error description) 
ERRTEXT(error text);

Parameters
return

Indicates completion of an Expedite Base for Windows command. If the return code is zero, 
the command completed successfully. If the return code is not zero, the program displays an 
error number along with ERRDESC and ERRTEXT records. This parameter contains 5 numeric 
characters.

errdesc
Provides a short description of an error. If the return code is zero, this parameter is not in 
baseout.pro or baseout.msg. This parameter contains 1 to 76 alphanumeric characters.

errtext
Provides a detailed description of an error and may suggest steps to correct the problem. 
There may be multiple error text records in the file. If the return code is zero, this parameter 
is not in baseout.pro or baseout.msg. This parameter contains 1 to 76 alphanumeric 
characters.
171



Expedite Base for Windows Programming Guide

WARNING record
WARNING record 
The WARNING record indicates a low-severity problem that does not prevent the profile command 
from completing.

Syntax
WARNING(warning) ERRDESC(error description) 
ERRTEXT(error text);

Parameters
warning

Indicates the warning code. This parameter contains 5 numeric characters.

errdesc
Provides a short description of an error. If the return code is zero, this parameter is not in 
baseout.pro or baseout.msg. This parameter contains 1 to 76 alphanumeric characters.

errtext
Provides a detailed description of an error and may suggest steps to correct the problem. 
There may be multiple error text records in the file. If the return code is zero, this parameter 
is not in baseout.pro or baseout.msg. This parameter contains 1 to 76 alphanumeric 
characters.
172



Chapter 8. Using Expedite Base for Windows profile commands

WARNING record
Changing passwords 
The rules for specifying passwords vary by system. Generally, your network password must have 
the following characteristics:

■ Be 5 to 8 characters long
■ Contain at least 3 different characters
■ Not be the same as any of your current or four previous passwords
■ Begin with an alphabetic character
■ Not be the word “cancel”

To change your network and Information Exchange passwords, use the NINPASSWORD and 
NIEPASSWORD parameters on the IDENTIFY command in basein.pro. The following example 
shows how to use these parameters.

identify inaccount(acct) inuserid(user01) inpassword(inpwd)
ninpassword(newinpwd)
ieaccount(acct) ieuserid(user01) iepassword(iepwd)
niepassword(newiepwd);

After you add new passwords, rerun the program to process the password change. When 
Expedite Base for Windows establishes a connection with the network and Information 
Exchange, it uses the original passwords to log on and then changes the passwords to the values 
specified in the NINPASSWORD and NIEPASSWORD parameters.

Before you run the program again, you must modify the IDENTIFY command in basein.pro. 
Remove the NINPASSWORD and NIEPASSWORD parameters and modify the INPASSWORD and 
IEPASSWORD parameters to reflect the new passwords. The following example shows how to 
modify the IDENTIFY command.

identify inaccount(acct) inuserid(user01) inpassword(newinpwd)
ieaccount(acct) ieuserid(user01) iepassword(newiepwd);

If you run the program before you modify the IDENTIFY command, you receive an error from 
Expedite Base for Windows.
173



Expedite Base for Windows Programming Guide

WARNING record
Selecting the Extended Security Option 
ESO provides additional password and Information Exchange mailbox security. The ESO USER 
flag may be turned on by the Information Exchange Service Administrator using Information 
Exchange Administration Services. Users with ESO can send files and messages to users with 
ESO and users without ESO.

For information on using ESO, see the Information Exchange Administration Services User’s 
Guide.

ESO contains the following security features:

■ Your Information Exchange Service Administrator must change your ESO password if it is 
the same as your user ID. If you do not provide a new password in the START command, your 
Information Exchange session will not be successful.

■ Your new ESO password must conform to the following rules.

• Cannot be the same as your Information Exchange user ID
• Must be at least 6 characters in length
• Must contain at least 3 different characters
• Must begin and end with a nonnumeric character
• Must contain at least 1 nonalphabetic character
• Must contain at least 1 alphabetic character
• Can only be the valid characters A-Z, 0-9, and special character @, #, and $
• Cannot be the same as the current or five previous passwords
• Cannot contain more than 2 identical, consecutive characters
• Cannot contain more than 3 identical, consecutive characters from the previous 

password

If your new password does not conform to these rules, it is considered invalid, and your 
Information Exchange session will not be successful.

■ Information Exchange revokes your ESO user ID if you make three consecutive attempts to 
start an Information Exchange session with an invalid password. All further attempts to start 
a session will be unsuccessful until your Information Exchange Service Administrator resets 
your password.

The Information Exchange Service Administrator can use the Information Exchange Admin-
istration Services password reset function to reinstate an ESO user ID.

NOTE: Passwords are reset immediately after resetting the ESO option to Y. 
When the administrator sets the ESO option to Y, all affected users must change 
their password at their next logon. This is true even if the administrator 
subsequently resets the ESO option back to N.
174



Chapter 8. Using Expedite Base for Windows profile commands

Encryption/decryption routines
Encrypting and decrypting passwords 
Expedite Base for Windows provides the capability to encrypt and decrypt passwords. The 
encryption process converts ASCII characters to special unreadable characters, while decryption 
performs the reverse process. If you choose to encrypt passwords, all the passwords that Expedite 
Base for Windows uses must be encrypted. These passwords include:

■ Network password
■ New network password
■ Information Exchange password
■ New Information Exchange password
■ Secondary network password

If you specify ENCRYPT(Y) on the IDENTIFY command in basein.pro, Expedite Base for Windows 
expects all passwords to be specified in encrypted format.

Encryption/decryption routines 
The encryption/decryption routines are located on the Expedite Base for Windows samples 
directory. There is a C version and a BASIC version.

C routine
To call the C version, specify:

psc(function,key,textlen,ptext,ctext)

where:

Basic routine
To call the BASIC version, specify:

call ps ("function",PST$,key)

where:

NOTE:  If you will be specifying encrypted passwords, be sure to specify the 
ENCRYPT(Y) parameter before any of the password parameters on the IDENTIFY 
command. Otherwise, if Expedite Base for Windows reads an encrypted 
password before reading the ENCRYPT(Y) parameter, it will not know that the 
password is encrypted and will not be able to properly process it.

function  Is an integer

1 For encryption

2 For decryption

key Is an integer that specifies the encryption to be used.

textlen Is an integer that is the length of the password.

ptext Is the password to be encrypted or decrypted.

ctext Is the place to put the encryption. The field length must be at least equal to textlen.

“function”  Specifies the type of encryption.

E For encryption
175



Expedite Base for Windows Programming Guide

Encryption/decryption routines
D For decryption

PST$ Is the password to encrypt or decrypt.

key Is the encryption key to be used. The range is -32768 to +32767.

NOTE:  For the network password and new network password, the key you 
must specify is 144. For the Information Exchange password and new 
Information Exchange password, you must specify key 151. For a secondary 
network password, you must specify key 167.
176



© Copyright GXS, Inc. 1998, 2005
Chapter 9
Using Expedite Base for Windows message 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
commands

To use Expedite Base for Windows message commands, you need to understand the command 
syntax. You also need to know when and how to use the commands. This chapter describes the 
message commands and provides examples.

Understanding command syntax examples 
The command syntax examples in this chapter show required and default parameters in boldface, 
and parameter values in italics.

In some examples, you have a choice between parameters or groups of parameters. The word or 
separates the choices from each other and two blank lines separate the choices from the other 
parameters in the example. Choose one line of parameters from any lines separated this way. If 
required parameters are in more than one of the choices, you still need to choose only one line.

Working with message commands 
Use the message commands to send and receive files, control your Information Exchange 
mailbox, and define lists of users. You must enter message commands for Expedite Base for 
Windows in basein.msg. When Expedite Base for Windows processes basein.msg, it echoes the 
message commands, along with their associated return codes, to baseout.msg.

The message commands are:

■ ARCHIVEMOVE, page 180

Copies files from the Information Exchange short-term archive to your mailbox. Expedite 
Base for Windows places a MOVED record in the response file as a result of the 
ARCHIVEMOVE command.

■ AUDIT, page 181

Retrieves an audit trail from Information Exchange and places it in your mailbox.
177



Expedite Base for Windows Programming Guide

Working with message commands
■ CANCEL, page 184

Cancels previously sent files if the receiver has not received them from their mailbox.

■ COMMIT, page 187

Sends a commit to Information Exchange and processes the response.

■ DEFINEALIAS, page 188

Defines a new alias, redefines an existing alias, or changes or deletes an existing alias table.

■ END, page 192

Ends an Information Exchange session.

■ GETMEMBER, page 193

Copies a library member from an existing Information Exchange library to an Information 
Exchange mailbox.

■ LIST, page 197

Sets up a list of account and user IDs that you can use to send and receive files.

■ LISTLIBRARIES, page 200

Returns a list of Information Exchange libraries to which you have access.

■ LISTMEMBERS, page 201

Returns a list of members within an Information Exchange library.

■ PURGE, page 202

Deletes a specific file from your mailbox.

■ PUTMEMBER, page 203

Adds a member to an existing Information Exchange library.

■ QUERY, page 206

Enables you to get information about all the files in your mailbox. You can also use QUERY 
to see the CDH information associated with each message.

■ RECEIVE, page 207

Enables you to receive all files or specific files, including e-mail.

■ RECEIVEEDI, page 215

Enables you to receive EDI-formatted files. Expedite Base for Windows supports X12, UCS, 
EDIFACT, and UN/TDI standards.

■ SEND, page 222

Enables you to send files, including e-mail that you save in a file, to a user or a list of users.
178



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
■ SENDEDI, page 228

Enables you to send EDI-formatted files. Expedite Base for Windows supports X12, UCS, 
EDIFACT, and UN/TDI standards.

■ START, page 233

Starts an Information Exchange session.

The following sections provide detailed information on each of these commands.
179



Expedite Base for Windows Programming Guide

Working with message commands
ARCHIVEMOVE command 
Use the ARCHIVEMOVE command to copy files from the Information Exchange short-term 
archive to your mailbox. The message response records associated with the ARCHIVEMOVE 
command are the MOVED record and the RETURN record.

Syntax
archivemove

archiveid(archive id);

ARCHIVEMOVE command example 
The following is an example of the ARCHIVEMOVE command:

archivemove archiveid(myrefid);

Results: Files stored in the Information Exchange archives with the archive ID of myrefid are 
copied to your mailbox.

Parameters
archiveid

Indicates the archive reference identifier for the files you want to copy from the archive to 
your mailbox. The archive reference identifier is the value you specify in the ARCHIVEID 
parameter on the RECEIVE or RECEIVEEDI command when you receive a file. If you do not 
specify an ARCHIVEID on the RECEIVE or RECEIVEEDI commands when you receive a file, 
Information Exchange assigns an archive reference identifier equivalent to the session key. 
To see what the session key is, look at the SESSIONKEY parameter of the RECEIVED record in 
baseout.msg or use Information Exchange Administration Services. Use 1 to 8 alphanumeric 
characters. This is a required parameter.
180



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
AUDIT command 
Use the AUDIT command to retrieve an audit trail from Information Exchange and place the infor-
mation in your mailbox. When an audit is available, you must issue a RECEIVE command to 
retrieve it. The audit information comes from the *SYSTEM* account name and the *AUDITS* 
user ID in user class #SAUDIT. The message response record associated with the AUDIT 
command is the RETURN record. For details on audit information, see Chapter 11, “Using 
additional features.’’ 

Syntax
audit

account(account) userid(user ID)
or

account(account) userid(user ID) sysid(system ID)
or

alias(alias) aliasname(alias name)
altacct(alternate account)
altuserid(alternate user ID|?)
msgtype(b|s|r) class(class)
startdate(start date) enddate(end date) status(blank|u|p|d)
timezone(l|g) level(1|2|3);

AUDIT command example
The following is an example of the AUDIT command:

audit account(acct) userid(user01) class(#e2);

Results:   This command places a level 1 audit report in your mailbox. This audit will include 
information about all files with a class of #e2 sent to and received from account acct and user ID 
user01, or any files that user ID might have purged.

Parameters
account

Indicates the account of an Information Exchange trading partner. Expedite Base for 
Windows uses this field in conjunction with the USERID parameter to indicate that you want 
only audit records for message exchanges with this account. If you specify an ACCOUNT 
parameter, you must also specify a USERID parameter. Use 1 to 8 alphanumeric characters.

userid
Indicates the user ID of an Information Exchange trading partner. Expedite Base for 
Windows uses this parameter in conjunction with the ACCOUNT parameter to indicate that 
you want only audit records for message exchanges with this user ID. If you specify a 
USERID parameter, you must also specify an ACCOUNT parameter. Use 1 to 8 alphanumeric 
characters.

NOTE: Information Exchange does not make audits available 
immediately. Therefore, you cannot successfully issue the RECEIVE 
command to receive the audit file immediately after issuing the AUDIT 
command. Audits normally are available during a subsequent session.
181



Expedite Base for Windows Programming Guide

Working with message commands
sysid
Indicates the system ID of an Information Exchange trading partner. You need the system ID 
only if you specify the ACCOUNT and USERID parameters for a trading partner on another 
Information Exchange system. If you specify a SYSID parameter, you must also specify the 
ACCOUNT and USERID parameters. Use 1 to 3 alphanumeric characters.

alias
Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to indicate that you want only audit 
records for message exchanges with a single user.

If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to indicate that you 
want only audit records for message exchanges with a single user. If you specify an 
ALIASNAME parameter, you must specify an ALIAS parameter. Use 1 to 16 alphanumeric 
characters.

altacct
Indicates the alternate account for which you want to receive an audit. ALTACCT can be one 
to eight characters. If you specify ALTACCT, you must specify ALTUSERID. This field allows 
you to request audit records for an account/user ID other than your own. If left blank, audit 
records for your own account will be returned. You must have authority to view audit 
records for the alternate account/user ID.

altuserid
Indicates that you want to retrieve audit records for other users in your account. To retrieve 
audit records for another user in your account, put the user’s ID here. To retrieve audit 
records for all user IDs in your account, use ? as the parameter value.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can create and maintain alias tables in two ways:

• Using Information Exchange Administration Services; see the
Information Exchange Administration Services User’s Guide.

• Using the DEFINEALIAS command; see “DEFINEALIAS command” on page 
188.

NOTE: ALTACCT is only valid for expansion level 3 requests.
182



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
If you want to retrieve audit records for several specific users, you must specify each user ID 
in a separate AUDIT command. Use 1 to 8 alphanumeric characters.

msgtype
Indicates the type of audit record to retrieve.

class
Indicates the user class of the files for which you want to retrieve audit records. Use 1 to 8 
alphanumeric characters.

startdate
Indicates the starting date of a time range for the messages and files for which you want 
audit records. The format is yymmdd or yyyymmdd. The default value is determined by Infor-
mation Exchange and is currently 000102 (January 2, 1900).enddate

Indicates the ending date of a time range for the messages and files for which you want audit 
records. The format is yymmdd or yyyymmdd. The default value is determined by Infor-
mation Exchange and is currently 420916 (September 16, 2042).

status
Indicates that you only want audit records for files with a specified status.

timezone
Indicates the date and time reference in the STARTDATE and ENDDATE parameters.

level
Indicates the style of an audit report.

NOTE: Information Exchange ignores the audit request and 
places an error message in your mailbox if you do not have service 
administrator authorization.

b Retrieve all audit records for files you have sent and that have been sent to you. 
This is the default.

s Retrieve all audit records for files you sent.

r Retrieve all audit records for files sent to you.

blank Retrieve audit records for all files. This is the default.

u Retrieve audit records for undelivered files only.

p Retrieve audit records for purged files only.

d Retrieve audit records for delivered files only.

l Your local time, as specified on the TIMEZONE parameter of the IDENTIFY 
command. This is the default.

g GMT (Greenwich mean time).

1 Retrieve audit report in the original style. This is the default.

2 Retrieve audit report in the enhanced style.

3 Retrieve audit report in the enhanced style with EDI exchange control number.
183



Expedite Base for Windows Programming Guide

Working with message commands
CANCEL command 
Use the CANCEL command to cancel files you sent to a single account and user ID, a list of users, 
or a destination specified by an alias name. You can cancel these files only if the receiver has not 
retrieved them from Information Exchange. Only the sender of a file can request to cancel the file 
from the receiver’s mailbox.

The message response record associated with the CANCEL command is the RETURN record.

Syntax
cancel

account(account) userid(user ID)
or

alias(alias) aliasname(alias name)
or

listname(list name)
priority(blank|p) msgname(message name)
msgseqno(message sequence number) class(class)
timezone(l|g) ack(blank|h|t)
startdate(start date) starttime(start time)
enddate(end date) endtime(end time);

CANCEL command example
The following is an example of the CANCEL command:

cancel account(acct) userid(user01) class(special);

Results: This command removes any files in the mailbox for account acct and user ID user01 
that you sent with a class of special and that have not yet been received.

Parameters
account

Indicates the account of an Information Exchange user to whom you sent data. Expedite 
Base for Windows uses this field in conjunction with the USERID parameter to identify the 
user. If you specify an ACCOUNT parameter, you must specify a USERID parameter. Use 1 to 8 
alphanumeric characters.

userid
Indicates the user ID of an Information Exchange user to whom you sent data. Expedite Base 
for Windows uses this field in conjunction with the ACCOUNT parameter to identify the user. 
If you specify a USERID parameter, you must specify an ACCOUNT parameter. Use 1 to 8 
alphanumeric characters.
184



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
alias
Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to identify the user to whom you 
sent data.

If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified on the ALIAS parameter. Expedite 
Base for Windows uses this field in conjunction with the ALIAS parameter to identify the user 
to whom you sent data. If you specify an ALIASNAME parameter, you must specify an ALIAS 
parameter. Use 1 to 16 alphanumeric characters.

listname
Indicates the name of a list of accounts and user IDs. Expedite Base for Windows uses this 
field to identify a list of users to whom you sent data. Use 1 to 8 alphanumeric characters.

priority
Indicates the priority of the files you want to cancel.

msgname
Indicates the message name of the files you want to cancel. Use 1 to 8 alphanumeric 
characters.

msgseqno
Indicates the message sequence number of the files you want to cancel. Use 1 to 5 alphanu-
meric characters.

class
Indicates the user class of the files you want to cancel. Use 1 to 8 alphanumeric characters.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can create and maintain alias tables in two ways:

• Using Information Exchange Administration Services; see the
Information Exchange Administration Services User’s Guide.

• Using the DEFINEALIAS command; see “DEFINEALIAS command” on page 
188.

blank Indicates normal priority. This is the default.

p Indicates high priority.
185



Expedite Base for Windows Programming Guide

Working with message commands
timezone
Indicates the time zone reference in the STARTTIME and ENDTIME parameters.

ack
Indicates the types of acknowledgment messages you want to receive regarding the cancel-
lation.

startdate
Indicates the start date of a time range for files sent to Information Exchange that you want 
to cancel. For a file to qualify for cancellation, the date the file was sent to Information 
Exchange must fall within this date range. The format is yymmdd or yyyymmdd. The default 
value is determined by Information Exchange and is currently 000102 (January 2, 1900).

starttime
Indicates the start time of a time range for files sent to Information Exchange that you want 
to cancel. For a file to qualify for cancellation, the time the file was submitted must fall 
within this time range. The format is HHMMSS. The default value is determined by Infor-
mation Exchange and is currently 000000 (00:00:00).

enddate
Indicates the ending date of a date range for files sent to Information Exchange that you 
want to cancel. For a file to qualify for cancellation, the date the file was submitted must fall 
within this date range. The format is yymmdd or yyyymmdd. The default value is determined 
by Information Exchange and is currently 420916 (September 16, 2042).

endtime
Indicates the ending time of a time range for the files sent to Information Exchange that you 
want to cancel. For a file to qualify for cancellation, the time the file was submitted must fall 
within this time range. The format is hhmmss. The default value is determined by Infor-
mation Exchange and is currently 235347 (23:53:47).

l Your local time, as specified on the TIMEZONE parameter of the IDENTIFY 
command. This is the default.

g GMT (Greenwich mean time).

blank No acknowledgments for the cancellations of files. However, Information 
Exchange may create other types of acknowledgments. This is the default.

h Acknowledgments include only header information.

t Acknowledgments include both header and text information.
186



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
COMMIT command 
Use the COMMIT command to send a commit to Information Exchange and process the response. 
In order for Expedite Base for Windows to perform the commit, a SEND, SENDEDI, or 
PUTMEMBER command must be requested between COMMIT commands or between a session start 
and a COMMIT command.

The message response record associated with the COMMIT command is the RETURN record.

Checkpoints are taken automatically:

■ After each COMMIT command, unless there is nothing to commit

■ At the end of each session, even if you have not specified a COMMIT command

■ While receiving data for a RECEIVE or RECEIVEEDI command, if Information Exchange 
requests a checkpoint

■ At the end of each RECEIVE or RECEIVEEDI command

The COMMIT command is valid only for user-initiated recovery. The TRANSMIT profile command 
determines the type of recovery. To specify user-initiated recovery, ensure that the RECOVERY 
parameter of TRANSMIT is set to u.

On restart, data transmission resumes after the last successful checkpoint or COMMIT command. 
If the error occurred while processing the first COMMIT command in the message command file 
and a checkpoint had not occurred, Information Exchange does not deliver any data and does not 
delete received data from the mailbox. In this case, Expedite Base for Windows retransmits all 
data upon restart. 

The COMMIT command has no parameters. 

Syntax
commit;
187



Expedite Base for Windows Programming Guide

Working with message commands
DEFINEALIAS command 
Use the DEFINEALIAS command to:

■ Create an alias table
■ Add a new alias
■ Redefine an existing alias
■ Change or delete an existing alias table

Although you can generally specify parameters in any order, the DEFINEALIAS command entries 
must include a DEFINEALIAS parameter and one of the following groups of parameters:

■ ACCOUNT and USERID
■ SYSID, ACCOUNT, and USERID
■ ALIAS and ALIASNAME

You must pair these entries correctly. You must specify a DEFINENAME parameter with the 
ACCOUNT and USERID parameters, or the SYSID, ACCOUNT, and USERID parameters. Another 
option is to specify the DEFINENAME parameter with the ALIAS and ALIASNAME parameters.You 
cannot specify another DEFINENAME parameter unless you complete the definition for the 
previous DEFINENAME.

If the value of the FUNCTION parameter is e for erase, you cannot specify a DEFINENAME 
parameter.

The message response record associated with the DEFINEALIAS command is the RETURN record.

Information Exchange does not perform table updates while you are in session. Therefore, it is 
possible that you may receive a zero return code for the DEFINEALIAS command but the alias 
table is not updated. For example, if you attempt to add an alias to a non-existent table, Infor-
mation Exchange places a system error message in your mailbox.

Syntax
definealias

aliastable(alias table) function(a|n|c|d|e)
authority(p|a|g)
definename(define alias name 1)
account(account 1) userid(user ID 1)

or
sysid(system ID 1) account(account 1) userid(user ID 1)

or
alias(alias 1) aliasname(alias name 1)
       :   :
definename(define alias name n)
account(account n)  userid(user ID n)

or
sysid(system ID n) account(account n) userid(user ID n)

or

NOTE: Your user ID must be authorized to update the alias table, or 
you will receive a system error message in your mailbox.

NOTE: Do not define an alias more than once in a session, or the first 
alias will be overwritten.
188



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
alias(alias n) aliasname(alias name n);

DEFINEALIAS command examples

Example 1: The following is an example of the DEFINEALIAS command:

definealias
aliastable(gx01) function(a)
definename(duns01) account(act1) userid(user1)
definename(duns02) sysid(eur) account(act2)  userid(user2)
definename(duns03) alias(gx02) aliasname(duns51);

Results: This command adds three new aliases to alias table GX01.

■ Alias name duns01 is associated with Information Exchange account act1 and user ID user1.

■ Alias name duns02 is associated with Information Exchange system eur, account act2, and 
user ID user2.

■ Alias name duns03 is associated with another alias duns51, defined in alias table gx02.

Example 2: The following is an example of an invalid DEFINEALIAS command:

definealias
aliastable(gx01) function(a)
definename(duns01) account(act1)  #invalid entry: no userid
definename(duns02) account(act2) userid(user2)
userid(user1)
#invalid entry: 2 userids
definename(duns03) alias(gx02) aliasname(dun51);

Results: This command is not valid because:

■ Alias name duns01 has an associated account, but no user ID.

■ Alias name duns02 has two user IDs associated with it.

NOTE: You can define alias names that refer to other alias names.
189



Expedite Base for Windows Programming Guide

Working with message commands
Parameters
aliastable

Indicates the alias table type and table name.

function
Indicates the type of operation you want Expedite Base for Windows to request for the alias 
table.

authority
Indicates the authorization level of the alias table you are referencing. Authority is valid only 
if FUNCTION is n. You cannot change the authority of an existing table.

definename
Indicates the alias name you want to add, change, or delete in the table specified by 
ALIASTABLE. Use 1 to 16 alphanumeric characters.

account
Indicates the account of an Information Exchange user. Expedite Base for Windows uses this 
field in conjunction with the USERID parameter to identify the user. If you specify an 
ACCOUNT parameter, you must specify a USERID parameter. Use 1 to 8 alphanumeric 
characters.

userid
Indicates the user ID of an Information Exchange user. Expedite Base for Windows uses this 
field in conjunction with the ACCOUNT parameter to identify the user. If you specify a 
USERID parameter, you must specify an ACCOUNT parameter. Use 1 to 8 alphanumeric 
characters.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

a Add the following entries to the alias table. This is the default.

n Create a new alias table using the name specified in the ALIASTABLE parameter.

c Change the following entries in the alias table.

d Delete the following entries from the alias table. If you list all entries in the 
table, you get the same results as with option e.

e Erase the entire alias table. If e is specified for FUNCTION, no other parameters 
can be used on the DEFINEALIAS command.

NOTE: If you specify n and an alias table by the same name 
already exists, Information Exchange will put a system error 
message in your mailbox, and the table will not be updated.

p Only the owner of the table can update the alias table. This is the default.

a Any administrator in the account can update the alias table.

g Any user can update the alias table. You cannot specify g for the authority if you 
are defining a private or organizational alias table.
190



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
sysid
Indicates the system ID of an Information Exchange user. You need the system ID only if 
you specify the ACCOUNT and USERID parameters for a user on another Information 
Exchange system. If you specify a SYSID parameter, you must specify the ACCOUNT and 
USERID parameters. Use 1 to 3 alphanumeric characters.

alias
Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to identify the user.

If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to identify the user. If 
you specify an ALIASNAME parameter, you must specify an ALIAS parameter. Use 1 to 16 
alphanumeric characters.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.
191



Expedite Base for Windows Programming Guide

Working with message commands
END command 
Use the END command to end an Information Exchange session. The message response record 
associated with the END command is the RETURN record.

Syntax
end;

NOTE: If you specify AUTOEND(Y) on the TRANSMIT command in 
basein.pro to tell Expedite Base for Windows to end the Information 
Exchange session automatically, you cannot specify END in 
basein.msg. Specifying END in basein.msg results in error 03620 if you 
use y as the AUTOEND value in basein.pro.
192



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
GETMEMBER command 
Use the GETMEMBER command to copy a member from an existing Information Exchange library 
to an Information Exchange user’s mailbox. When the member is available in the mailbox, 
specify a RECEIVE command as the next command to receive it from the mailbox. When you 
issue a GETMEMBER command, the library member may not be immediately available in your 
mailbox. If you do not receive the member immediately, do not issue another GETMEMBER 
command if the first one was successful. You know it was successful if there was a 
RETURN(00000) in the output file. Try to receive the member in a subsequent session.

If you leave the destination blank in the GETMEMBER command, the default is your own mailbox. 
If you do not specify the MSGNAME, MSGSEQNO, and CLASS parameters, the values default to the 
ones the member had when it was stored in the library.

You may get a WARNING record on a GETMEMBER command if you don’t have access to the 
library, if the library does not exist, or if the member does not exist in the library. You also cannot 
get a member from a library on another Information Exchange system. You can get a member 
from a library on your Information Exchange system into a mailbox for a user on another Infor-
mation Exchange system.

The message response record associated with the GETMEMBER command is the RETURN record.

Syntax
getmember

library(library name)
member(member name)
owner(library account)
account(account) userid(user ID)

or
sysid(system ID) account(account) userid(user ID)

or
alias(alias) aliasname(alias name)

or
listname(list name)
msgname(message name) msgseqno(message sequence number)
class(class) charge(1|3|5|6)
ack(blank|a|b|c|d|e|f|r) retain(retention period);

GETMEMBER command example 
getmember owner(act1) library(mylib)
member(book1)
account(act2) userid(user01)    #put in mailbox for act2/user01
class(book);
#override sender’s class

Results: This command gets member book1 from library mylib under account act1. It places the 
member in the mailbox for account act2 and user ID user01, with a user class of book.

Parameters
library

Indicates the library from which Information Exchange copies the member. Use 1 to 8 alpha-
numeric characters.
193



Expedite Base for Windows Programming Guide

Working with message commands
member
Indicates the library member Information Exchange copies from the library. Use 1 to 8 
alphanumeric characters.

owner
Indicates the account of the library owner. The owner account name is used to distinguish 
between libraries with the same name belonging to different accounts. The default is your 
own account. Use 1 to 8 alphanumeric characters.

account
Indicates the account name of an Information Exchange user receiving the member. 
Expedite Base for Windows uses this field in conjunction with the USERID parameter to 
identify the user. If you specify an ACCOUNT parameter, you must specify a USERID 
parameter. Use 1 to 8 alphanumeric characters. The default is your own account.

userid
Indicates the user ID of an Information Exchange user receiving the member. Expedite Base 
for Windows uses this field in conjunction with the ACCOUNT parameter to identify the user. 
If you specify a USERID parameter, you must specify an ACCOUNT parameter. Use 1 to 8 
alphanumeric characters. The default is your own user ID.

sysid
Indicates the system ID of an Information Exchange user receiving the member. You need 
the system ID only if you specify the ACCOUNT and USERID parameters for a user on another 
Information Exchange system. If you specify a SYSID parameter, you must specify the 
ACCOUNT and USERID parameters. Use 1 to 3 alphanumeric characters.

alias
Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to identify the user receiving the 
member.

If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to identify the user 
receiving the member. If you specify an ALIASNAME parameter, you must specify an ALIAS 
parameter. Use 1 to 16 alphanumeric characters.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can create and maintain alias tables in two ways:

• Using Information Exchange Administration Services; see the
Information Exchange Administration Services User’s Guide.

• Using the DEFINEALIAS command; see “DEFINEALIAS command” on page 
188.
194



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
listname
Indicates the name of a list of accounts and user IDs. Expedite Base for Windows uses this 
field to identify a list of users receiving the member. Use 1 to 8 alphanumeric characters.

msgname
Indicates the name you assign to the file as an identifier. This name will override the 
MSGNAME used by the originator when this member was put into the library. If you do not 
specify a MSGNAME, the default is the MSGNAME specified when the member was stored in 
the library. Use 1 to 8 alphanumeric characters.

msgseqno
Indicates the control number you assign to the file. This number will override the MSGSEQNO 
used by the originator when this member was put into the library. If you do not specify a 
MSGSEQNO, the default is the MSGSEQNO specified when the member was stored in the 
library. Use 1 to 5 alphanumeric characters.

class
Indicates the user class you assign to the files. A receiver can use this name to receive only 
files of this class. This user class will override the class used by the originator when this 
member was put into the library. If you do not specify a class, the default is the user class 
specified when the member was stored in the library. Use 1 to 8 alphanumeric characters.

charge
Indicates to Information Exchange how the receiver wants to pay the receive charge.

ack
Indicates the type of acknowledgment you want to receive. Information Exchange puts these 
acknowledgments in your mailbox.

1 Indicates the receiver pays the receive charge.

3 Indicates the receiver pays all charges, if agreed to by the receiver. If not, the 
library owner and the receiver split the charges, if agreed to by the receiver. 
Otherwise, the library owner pays all charges.

5 Indicates the library owner pays the receive charge, if agreed to by the library 
owner. Otherwise, the receiver pays. This is the default.

6 Indicates the library owner pays the receive charge.

blank No acknowledgment. This is the default.

a Information Exchange creates only purge acknowledgments.

b Information Exchange creates both receipt and delivery acknowledgments.

c Information Exchange creates both receipt and purge acknowledgments.

d Information Exchange creates only delivery acknowledgments.

e Information Exchange creates either purge or delivery acknowledgments.

f Information Exchange creates receipt acknowledgments and either purge or 
delivery acknowledgments.

r Information Exchange creates only receipt acknowledgments.
195



Expedite Base for Windows Programming Guide

Working with message commands
For more information, refer to see “Using acknowledgments” on page 267.

retain
Indicates the number of days Information Exchange keeps the file in the mailbox if no one 
receives it. Valid values are blank and 0 through 180.

The maximum retention period and the default retention period can be different on different 
Information Exchange systems. These periods are system-dependent. The default retention 
period is determined when Information Exchange is installed. For installations in the U.S., 
the default retention period is 30 days. Contact your marketing representative for more infor-
mation on these values.

If you specify 0 or blank, Information Exchange retains the file for the default retention 
period. If you specify a retention period that is longer than the maximum retention period for 
your system, Information Exchange retains the file for the default retention period.

NOTE: If the library owner is paying for the receive charges for 
the member, the library owner receives the acknowledgment. 
Otherwise, the individual who issued the GETMEMBER request 
receives the acknowledgment.
196



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
LIST command 
Use the LIST command to create a distribution list of account and user IDs when sending and 
receiving files. The message response record associated with the LIST command is the RETURN 
record.

In the following syntax, the dots between lines indicate that you can list as many accounts, user 
IDs, and aliases as necessary.

Syntax
list

listname(list name) function(n|a|d|e) listtype(t|p|a|g)

account(account 1) userid(user ID 1)
.  .
.  .
alias(alias 1) aliasname(alias name 1)
.  .
.  .
alias(alias n) aliasname(alias name n)
.  .
.  .
sysid(system ID n) account(account n) userid(user ID n);

A LIST command can include as many ALIAS and ALIASNAME entries, or ACCOUNT and USERID 
entries as required to create the list. Although you can generally specify parameters in any order, 
the LIST command has the following constraints:

■ LIST command entries should include either an ACCOUNT and USERID; a SYSID, ACCOUNT and 
USERID; or ALIAS and ALIASNAME. You must pair these entries correctly. For example, you 
must specify an ACCOUNT parameter next to a USERID parameter.

■ If you specify the SYSID parameter, you must specify it either before the ACCOUNT and 
USERID parameters to which it belongs or between them. It cannot follow the ACCOUNT and 
USERID parameters.

■ At least one list entry is required for functions a (add entries), d (delete entries), or n (new 
list). No entries are permitted for function e (erase entire list).

LIST command example 
The following is an example of the LIST command:

list listname(mylist) function(n)
account(act1) userid(user01)
sysid(eur) account(act2) userid(user02)
alias(gtbl) aliasname(alias1)
account(act1) userid(user03);

Results: This command creates a list called mylist with four addresses. Two of the addresses are 
identified by account and user ID; one by system, account, user ID; and one by an alias. Because 
no LISTTYPE parameter was specified, the list is temporary and is discarded when the session 
ends.

CAUTION: If you specify FUNCTION(N) to create a new list and there is already an 
existing list with that name, you will overwrite the contents of the existing list with 
the new list that you are defining.
197



Expedite Base for Windows Programming Guide

Working with message commands
Parameters
listname

Indicates the name of the list you want to define. Expedite Base for Windows uses this field 
to identify a list of users. Use 1 to 8 alphanumeric characters. This is a required parameter.

function
Indicates the type of operation you want Expedite Base for Windows to perform on the list. 
This is a required parameter.

listtype
Indicates the list type.

account
Indicates the account name of an Information Exchange user. Expedite Base for Windows 
uses this field in conjunction with the USERID parameter to identify the user. If you specify 
an ACCOUNT parameter, you must specify a USERID parameter. Use 1 to 8 alphanumeric 
characters.

userid
Indicates the user ID of an Information Exchange user. Expedite Base for Windows uses this 
field in conjunction with the ACCOUNT parameter to identify the user. If you specify a 
USERID parameter, you must specify an ACCOUNT parameter. Use 1 to 8 alphanumeric 
characters.

alias
Indicates the table type and table name of an alias table. Expedite Base for Windows uses this 
field in conjunction with the ALIASNAME parameter to identify the user.

CAUTION: If you specify FUNCTION(N) to create a new list and there is already an 
existing list with that name, you will overwrite the contents of the existing list with 
the new list that you are defining.

n Create a new list using the name specified in the LISTNAME parameter and add 
the entries to the list. This is the default.

a Add the following entries to the list.

d Delete the following entries from the list. If you include all the names from the 
list, you get the same result as with option e.

e Erase the entire list.

t The list is temporary; it goes away when your session ends. This is the default.

p The list is a permanent, private list.

a The list is a permanent list accessible to all members of your account.

g The list is a permanent list with account level grouping. This type of list is used 
to limit communication with other users. For more information, see the Infor-
mation Exchange Administration Services User’s Guide.

NOTE: If you want the table to exist after the session, you must 
specify an option other than t.

blank An alias name was not used. This is the default.
198



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to identify the user. If 
you specify an ALIASNAME parameter, you must specify an ALIAS parameter. Use 1 to 16 
alphanumeric characters.

sysid
Indicates the system ID of an Information Exchange user. You need the system ID only if 
you specify the ACCOUNT and USERID parameters for a user on another Information 
Exchange system. If you specify a SYSID parameter, you must specify the ACCOUNT and 
USERID parameters. Use 1 to 3 alphanumeric characters.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can create and maintain alias tables in two ways:

■ Using Information Exchange Administration Services; see the
Information Exchange Administration Services User’s Guide.

■ Using the DEFINEALIAS command; see “DEFINEALIAS command” 
on page 188.
199



Expedite Base for Windows Programming Guide

Working with message commands
LISTLIBRARIES command 
Use the LISTLIBRARIES command to request a list of Information Exchange libraries. Expedite 
Base for Windows returns a list of libraries to which you have access and that meet the criteria 
you specified on the command.

The message response records associated with the LISTLIBRARIES command are the LIBRARYLIST 
and RETURN records. 

Syntax

listlibraries

authority(w|r)

selection(a|c)

owner(library owning account);

LISTLIBRARIES command example 
The following is an example of the LISTLIBRARIES command:

listlibraries;

Results: Expedite Base for Windows returns a list of all libraries to which you have access.

Parameters
authority

Indicates the user’s access authority for the list of libraries requested.

If SELECTION(C) is specified, this parameter is ignored.

selection
Indicates the level of library search.

owner
Indicates the owning account to use where SELECTION(A) is specified. The default is the 
user’s account. If SELECTION(C) is specified, this parameter is ignored. Use 1 to 8 alphanu-
meric characters.

w Write or update access authority. This is the default.

r Read access authority.

a A list of libraries with a specific owning account. This is the default.

c A complete list of libraries.
200



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
LISTMEMBERS command 
Use the LISTMEMBERS command to receive a list of members within an Information Exchange 
library. Place the command in the message command file.

The message response records associated with the LISTMEMBERS command are the MEMBERLIST 
and RETURN records.

Syntax

listmembers

owner(library owning account)

library(library name);

LISTMEMBERS command example 
The following is an example of the LISTMEMBERS command:

listmembers library(mylib);

Results: Expedite Base for Windows returns a list of members within the library mylib to which 
you have access.

Parameters
owner

Indicates the library owning account. The default is the user’s account. Use 1 to 8 alphanu-
meric characters.

library
Indicates the library containing the members to be listed. You must have read access to the 
library. This parameter is required. Use 1 to 8 alphanumeric characters.
201



Expedite Base for Windows Programming Guide

Working with message commands
PURGE command 
Use the PURGE command to delete a specific file from your Information Exchange mailbox. To 
authorize use of this command, the Service Administrator must use Information Exchange 
Administration Services to set the Use message purge command field to y in your Information 
Exchange profile.

The message response record associated with the PURGE command is the RETURN record.

Syntax

purge

msgkey(message key);

PURGE command example 
The following is an example of the PURGE command:

purge msgkey(abc1de2fg34hijklm5n6);

Results: Expedite Base for Windows deletes the file having a message key of 
abc1de2fg34hijklm5n6 from your mailbox.

Parameter
msgkey

Indicates the 20-character message identifier of the file to be deleted. This message key can 
be obtained from the AVAILABLE record for this file in response to a QUERY command.
202



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
PUTMEMBER command 
Use the PUTMEMBER command to add a member to an existing Information Exchange library. 
The message response records associated with the PUTMEMBER command are the MEMBERPUT 
record and the RETURN record.

Syntax

putmember

library(library name)
member(member name)
fileid(class)
owner(library owner account)
replace(n|y)
format(n|y) class(class)
ack(blank|d)
msgname(message name)
msgseqno(message sequence number)
datatype(a|b) delimited(n|y)
verify(n|y) description(description)
translate(translate table)
destfile(destination file) destloc(destination location);

PUTMEMBER command example 
The following is an example of the PUTMEMBER command:

putmember library(mylib) member(book2)
fileid(book.scr);

Results: This command puts file book.scr as member book2 in library mylib.

Parameters
library

Indicates the name of the library to update. Use 1 to 8 alphanumeric characters.

member
Indicates the name of the member as it should appear in the library. Use 1 to 8 alphanumeric 
characters.

fileid
Indicates the name of the file you are sending. Use 1 to 54 alphanumeric characters.

owner
Indicates the account of the library owner. The default is your account. Use 1 to 8 alphanu-
meric characters.

NOTE: You must have authority to update this library or you will 
receive a system error in your mailbox.
203



Expedite Base for Windows Programming Guide

Working with message commands
replace
Indicates whether Expedite Base for Windows replaces a member with the same name as the 
file that you are putting into the library.

format
Indicates whether you want to send the data as a file or e-mail.

class
Indicates the user class of the files you are sending. Use 1 to 8 alphanumeric characters.

ack
Indicates the type of acknowledgment you want to receive. Information Exchange puts these 
acknowledgments in your mailbox.

For more information, refer to see “Using acknowledgments” on page 267.

msgname
Indicates the name you assign the file as an identifier. Use 1 to 8 alphanumeric characters.

msgseqno
Indicates the control number you assign the file. Use 1 to 5 alphanumeric characters.

datatype
Indicates whether the data is text or binary.

delimited
Indicates whether data is delimited with carriage-return and line-feed (CRLF) characters.

n Do not replace the member with the same name as the file that you are putting 
into the library. This is the default.

Note: If you specify REPLACE(N), if the member already exists, the data is 
sent but deleted, and you receive a system error message in your mailbox.

y Replace the member with the same name as the file that you are putting into the 
library.

n Send the data without e-mail formatting. This is the default.

y Format the data as e-mail. This implies fixed 79-byte records. Expedite Base for 
Windows pads records with blanks. You cannot specify DATATYPE(B) or 
DELIMITED(Y) with this option.

blank No acknowledgment. This is the default.

d Only delivery acknowledgments.

a Text data. This is the default.

b Binary data.

n Records are not delimited by CRLF characters.

y Records are delimited by CRLF characters. Expedite Base for Windows does 
not insert CRLF characters; it assumes that CRLF characters are already in the 
file.
204



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
The default is y for text data and n for binary data.

verify
Indicates whether Expedite Base for Windows verifies that the library is defined and that 
you have update access before sending the file. You cannot verify a library that resides on 
another system.

When you use the VERIFY parameter on the PUTMEMBER command, you are not charged for 
the verification request.

description
Provides a free-format description of the file. Use 1 to 79 alphanumeric characters. The 
description is only available to receiving interfaces that support the CDH. For more infor-
mation on the CDH, see Appendix B, “Common data header.’’

translate
Indicates the name of a translate table that overrides normal ASCII-to-EBCDIC translation. 
Use 1 to 8 alphanumeric characters. Expedite Base for Windows appends the suffix .xlt to 
this value to produce the name of the file containing the translate table. If you do not use this 
parameter, Expedite Base for Windows uses the translate table specified on the TRANSMIT 
command. If no TRANSLATE table was specified, Expedite will use the default Information 
Exchange translation table.

destfile
Indicates the file name to use in the common data header (CDH) as the original file name. If 
the receiver is using a workstation-based Expedite Base for Windows and specifies 
ORIGFILE (Y) on the RECEIVE or RECEIVEEDI command, Expedite Base for Windows uses 
this file name to store the data when it is received. If you specify a file name that is not valid 
on the receiver’s system, Expedite Base for Windows uses the file name in the FILEID 
parameter on the RECEIVE or RECEIVEEDI command. By default, Expedite Base for Windows 
determines the original file name from the FILEID parameter on the SEND, SENDEDI, or 
PUTMEMBER command. Use 1 to 128 characters.

destloc
Indicates the file location to use in the common data header (CDH). When the file is 
received or the receiver’s mailbox is queried, Expedite Base for Windows uses the value in 
the RECEIVE or AVAILABLE record in the SENDERLOG parameter. By default, Expedite 
Base for Windows uses the file location in the sender’s system. Use 1 to 128 characters.

n Do not verify that the library is defined or that you have access. This is the 
default.

y Verify that the library is defined and that you have update access before sending 
the file. If the library does not exist or if you do not have update access to it, the 
file is not sent and a WARNING record appears in the output file for this 
command.
205



Expedite Base for Windows Programming Guide

Working with message commands
QUERY command 
Use the QUERY command to return a list of all files in your Information Exchange mailbox. The 
message response records associated with the QUERY command are the AVAILABLE record and 
the RETURN record. Expedite Base for Windows writes an AVAILABLE record for each file in your 
mailbox. For more information, see “AVAILABLE record” on page 239.

Syntax

query

cdh(y|n);

QUERY command example 
The following is an example of the QUERY command:

query;

Results: This command creates a list of available files in your mailbox. The list contains infor-
mation from the CDH of each file.

Parameter
cdh

Indicates whether you want CDH information included in the response.

y Include the CDH information in the response. This is the default.

n Do not include the CDH information in the response.
206



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
RECEIVE command 
Use the RECEIVE command to retrieve files from an Information Exchange mailbox. The message 
response records associated with the RECEIVE command are the RECEIVED record and the RETURN 
record.

Syntax

receive

alias(alias) aliasname(alias name)
or

sysid(system ID) account(account)  userid(user ID)
or

account(account)  userid(user ID)
or

listname(list name)
or

requeued(n|y)

fileid(class) format(n|y) class(class)
archiveid(archive ID) multfiles(n|y) origfile(n|y)
recordsize(record size) processlen(c|r|i)
autoedi(y|n) ediopt(y|n)
translate(translate table) removeof(n|y)
allfiles(y|n) nonedionly(n|y) msgkey(message key)
startdate(starting date) starttime(starting time)
enddate(ending date) endtime(ending time) timezone(l|g) wait(wait time);

RECEIVE command example
The following is an example of the RECEIVE command:

receive fileid(price.fil) class(prices) recordsize(80) ediopt(n)
startdate(040701) starttime(000000) enddate(041231) endtime(180000);

Results: Files in your Information Exchange mailbox with a user class of prices are received in 
price.fil. If more than one such file exists in your mailbox, it is appended to price.fil. Expedite 
Base for Windows inserts a CRLF character after every 80 characters, but not at the end of EDI 
segments. Only files sent between 00:00:00 hours (your local time) July 1, 2004, and 18:00:00 
hours December 31, 2004, are received from your mailbox.

NOTE: If you are using supported data compression software and 
receive compressed data, not all parameters are supported. See 
Appendix E, “Using data compression,’’, for more information.
207



Expedite Base for Windows Programming Guide

Working with message commands
Parameters
alias

Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to identify the user from whom you 
are receiving data.

If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to identify the user from 
whom you are receiving data. If you specify an ALIASNAME parameter, you must specify an 
ALIAS parameter. Use 1 to 16 alphanumeric characters.

sysid
Indicates the system ID of a user on another system from whom you are receiving data. You 
need the system ID only if you specify the ACCOUNT and USERID parameters for a user on 
another system. If you specify a SYSID parameter, you must specify the ACCOUNT and 
USERID parameters. Use 1 to 3 alphanumeric characters.

account
Indicates the account of an Information Exchange user from whom you are receiving data. 
Expedite Base for Windows uses this field in conjunction with the USERID parameter to 
identify the user. If you specify an ACCOUNT parameter, you must specify a USERID 
parameter. Use 1 to 8 alphanumeric characters.

userid
Indicates the user ID of an Information Exchange user from whom you are receiving data. 
Expedite Base for Windows uses this field in conjunction with the ACCOUNT parameter to 
identify the user. If you specify a USERID parameter, you must specify an ACCOUNT 
parameter. Use 1 to 8 alphanumeric characters.

listname
Indicates the name of a list of accounts and user IDs. Expedite Base for Windows uses this 
field to identify a list of users from whom you are receiving data. Use 1 to 8 alphanumeric 
characters.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can create and maintain alias tables in two ways:

■ Using Information Exchange Administration Services; see the
Information Exchange Administration Services User’s Guide.

■ Using the DEFINEALIAS command; see “DEFINEALIAS command” 
on page 188.
208



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
requeued
Indicates whether Expedite Base for Windows receives only files that have been retrieved 
from archive.

fileid
Indicates the name of the file where Expedite Base for Windows places the received data. 
Use 1 to 128 alphanumeric characters.

format
Indicates whether you want to send the data as a file or in Expedite Base for Windows e-mail 
format. See “Sending and receiving e-mail” on page 58 for more information.

class
Indicates the user class of the files to receive. You can limit the files you receive to files with 
this user class. Use 1 to 8 alphanumeric characters.

You can use a question mark as a wildcard for any character or characters. For example, to 
receive all files with a user class beginning with AB1, type AB1?

To receive all files with a user class ending with 999, type ?999 

If you specify FORMAT(Y), the default user class is FFMSG001, which is reserved for e-
mail.

If you specify FORMAT(N), the default is blank, which indicates all user classes.

archiveid
Indicates the archive reference identifier you want Information Exchange to assign to the 
files you receive. If your Information Exchange profile indicates that archiving is enabled, 
then Information Exchange will save the file in archive with this archive ID. You can use this 
archive ID on the ARCHIVEMOVE command later to place a copy of this file back in your 
mailbox. Use 1 to 8 alphanumeric characters.

n Receive all files in your mailbox using the receive specifications in this 
command. This is the default.

y Receive files retrieved from archive only. If you specify y, you cannot specify an 
Information Exchange SYSID, ACCOUNT, USERID, ALIAS, or ALIASNAME in the 
RECEIVE command.

n Do not format the data as e-mail. This is the default.

y Format the data as Expedite Base for Windows e-mail. This implies fixed 79-
byte records.
209



Expedite Base for Windows Programming Guide

Working with message commands
multfiles
Determines whether the files you receive are put into separate files or are concatenated into 
one file.

origfile

Indicates whether you want to receive data into a file using the original name from the 
sending system.

N Concatenate all received files into a single file. This is the default value.

Y Create a new separate file for the second and subsequent files. New files are 
named by adding a numbered extension starting with .002.  

The new extension will be added after any existing extension on the file name; 
any original extension will not be truncated.  If more than 999 files are received, 
the extension becomes four digits: .1000, .1001, .1002, and so on.  If more than 
9999 files are received, the extension becomes five digits: .10000, .10001, 
.10002, and so on. If more than 99999 are received, the remaining files are 
appended to the file name in FILEID with the extension .ovf. For example, if 
you specify FILEID(testmsg) and three files are received, Expedite Base for 
Windows names the files as follows:

File 1 = testmsg
File 2 = testmsg.002
File 3 = testmsg.003

If you receive 1000 or more files, files 1001, 1002, and 1003 would be named as 
follows:

File 1001 = test.msg.1001
File 1002 = test.msg.1002
File 1003 = test.msg.1003

If you receive more than 99999 files, the data in the files after file 99999 is 
appended to a file with the extension of .ovf.

E

CAUTION: If you send a file with a file name greater than 54 characters, and your 
trading partner receives that file using the ORIGFILE(Y) parameter, the file name 
may be truncated based on the maximum file length that your trading partner’s 
version of Expedite can handle. 

For example, if you use Expedite Base for Windows 4.7 to send a file named 
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567
890.dat to a trading partner who is using Expedite Base/AIX or Expedite for 
Windows and receives the file with ORIGFILE(Y), the file name will be: 
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ12.  The 
file name refers to only the name of the file (and extension), and not its path.

n Receive all data into the file indicated by FILEID. This is the default value.

y Receive the file into the original file name if the original file name specified in 
the CDH SENDERFILE is valid for a Windows file system.
210



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
recordsize
Indicates whether Expedite Base for Windows breaks EDI data into fixed-length records by 
placing CRLF characters in the data at specified intervals. This option is only active if 
EDIOPT is n and AUTOEDI is y.

processlen
Controls the processing of length delimiters at the beginning of each record. Expedite Base 
for Windows uses this parameter only if the CDH indicates that the file is delimited by 
length delimiters at the beginning of each record.

autoedi
Indicates whether Expedite Base for Windows automatically performs EDI processing for 
files, as explained in Chapter 7, “Sending and receiving EDI data,’’ if the CDH indicates that 
the files are EDI formatted.  If you specify blank for this parameter, then n (no) is assumed.

NOTE: Expedite Base for Windows uses the sender’s original file 
name from the CDH, SENDERFILE, to store the data received but 
does not use the original location, SENDERLOC, because the results 
may be undesirable for the receiver. For example, the receiver on 
Expedite Base for Windows may want to receive a file named 
config.sys; but undesirable results may occur if the original 
location c:\ was used by Expedite Base for Windows because 
c:\config.sys is an important system file on most user’s PCs. 
Instead, Expedite Base for Windows uses the location (path) 
specified in the FILEID parameter on the RECEIVE or RECEIVEEDI 
command.

000 Do not insert CRLF characters in the file. This is the default.

nnn Insert CRLF characters every nnn characters, where nnn is a number from 1 to 
999.

NOTE: This parameter does not do anything for files sent without 
a CDH. For more information on the CDH, see Appendix B, 
“Common data header.’’

c Convert the length delimiters to CRLF delimiters. This is the default.

r Remove the length delimiters from the data.

i Ignore the length delimiters in the data.

NOTE: This parameter does not do anything for files sent without 
a CDH. For more information on the CDH, see Appendix B, 
“Common data header.’’

y Automatically perform EDI processing if the CDH indicates that the file is EDI 
formatted. This is the default.

n Do not perform EDI processing for any of the files.

NOTE: This parameter does not do anything for files sent without 
a CDH. For more information on the CDH, see Appendix B, 
“Common data header.’’
211



Expedite Base for Windows Programming Guide

Working with message commands
ediopt
Indicates whether Expedite Base for Windows adds CRLF characters after each segment 
delimiter in the EDI file. Expedite Base for Windows ignores this option unless the CDH 
indicates that the received message is EDI data and AUTOEDI is set to y.

translate
Indicates the name of a translate table that overrides normal EBCDIC-to-ASCII translation. 
Use 1 to 8 alphanumeric characters. Expedite Base for Windows appends the suffix .xlt to 
this value to produce the name of the file containing the translate table. If you do not use this 
parameter, Expedite Base for Windows uses the translate table specified on the TRANSMIT 
command. If no TRANSLATE table was specified, Expedite Base for Windows uses the 
default Information Exchange translation table.

removeof
Indicates whether Expedite Base for Windows removes the EOF character from the end of a 
received file. This option is useful when you receive several files into a single file.

allfiles
Indicates whether Expedite Base for Windows receives all files that match the RECEIVE 
specifications or just the first file in the Information Exchange mailbox that matches the 
RECEIVE specifications.

nonedionly
Specifies that you receive only data other than EDI data.

msgkey
Indicates a unique message key that you can use to receive a specific file from a mailbox. 
You can get this value from the AVAILABLE record in response to a QUERY command. Use 20 
characters.

startdate
Indicates the starting date of a time range for the files you want to receive from Information 
Exchange. For a file to qualify to be received, the date the file was sent to Information 
Exchange must fall within this date range.

y Add CRLF characters after segment delimiters if the CDH indicates that the file 
is EDI formatted. This is the default. If autoedi is set to n, this option is ignored.

n Do not add CRLF characters after each segment delimiter in the EDI file.

n Do not remove the EOF character. This is the default.

y Remove the EOF character if it is the last character of a received file.

y Receive all files that match the RECEIVE specifications. This is the default.

n Receive only the first file that matches the RECEIVE specifications.

n Receive all files from your mailbox that match the RECEIVE specifications. This 
is the default.

y Receive only those files from your mailbox that match the RECEIVE specifica-
tions and are identified in the CDH as not having one of the EDI formats, or 
have no CDH.
212



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
Use the yymmdd or yyyymmdd format for the starting date. The default value is determined 
by Information Exchange and is currently 000102 (January 2, 1900).

If you limit the range to one day and an error occurs while sending the file, files could be left 
undetected in the mailbox. For example, assume that an error occurs while sending a file on 
June 11, 2004, and the file is not actually placed in the mailbox until 11:00 a.m. on June 12.

If you issue a RECEIVE command at 8:00 a.m. on June 12, 2004, with a range of 00:00:00 to 
24:00:00 on June 11 specified, the file will not be received because it has not yet arrived in 
the mailbox. If you then issue another RECEIVE command at 8:00 a.m. on June 13, 2004, with 
a range of 00:00:00 to 24:00:00 on June 12 specified, the file will still not be received 
because its starting date of June 11 is outside the specified range.

To avoid missing any files, you should either move the starting date earlier, or periodically 
check your mailbox.

starttime
Indicates the starting time of a time range for the files you want to receive from Information 
Exchange. For a file to qualify to be received, the time the file was sent to Information 
Exchange must fall within this time range. The format is hhmmss. The default value is deter-
mined by Information Exchange and is currently 000000 (00:00:00).

enddate
Indicates the ending date of a time range for the files you want to receive from Information 
Exchange. For a file to qualify to be received, the date the file was sent to Information 
Exchange must fall within this date range. Use the yymmdd or yyyymmdd format for the 
ending date. The default value is determined by Information Exchange and is currently 
420916 (September 16, 2042).

endtime
Indicates the ending time of a time range for files you want to receive from Information 
Exchange. For a file to qualify to be received, the time the file was sent to Information 
Exchange must fall within this time range. Use the hhmmss format for the ending time. The 
default value is determined by Information Exchange and is currently 235347 (23:53:47).

timezone
Indicates the time reference in the STARTTIME and ENDTIME parameters.

NOTE: Information Exchange Administration Services displays 
the STARTTIME and ENDTIME as hhmmss, but Information 
Exchange actually stores a more precise value. Therefore, you 
should specify a STARTTIME two seconds earlier and an ENDTIME 
two seconds later than the time shown in baseout.msg and in 
Information Exchange Administration Services.

NOTE: Information Exchange Administration Services displays 
the STARTTIME and ENDTIME as HHMMSS, but Information 
Exchange actually stores a more precise value. Therefore, you 
should specify a STARTTIME two seconds earlier and an ENDTIME 
two seconds later than the time shown in baseout.msg and in 
Information Exchange Administration Services.

l Your local time, as specified on the TIMEZONE parameter of the IDENTIFY 
command. This is the default.

g Greenwich mean time (GMT).
213



Expedite Base for Windows Programming Guide

Working with message commands
wait
Indicates the amount of time Expedite Base for Windows should wait for data to arrive in the 
mailbox. The format is MMSS where MM is from 02 to 05 minutes, and SS is from 00 to 59 
seconds. The maximum allowed time is 0500 (or 5 minutes). The minimum is 0200 (or 2 
minutes).

When a a RECEIVE is specified with the WAIT parameter, only the first file that meets the 
criteria specified on the RECEIVE will be received. You need to specify an additional RECEIVE 
command without the WAIT parameter to receive any subsequent files.

NOTE: If you are using TCP/IP communications and the value 
specified for the TIMEOUT parameter on the TCPCOMM command is 
less than the value specified for the WAIT parameter, the value in 
TIMEOUT is used.
214



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
RECEIVEEDI command 
Use the RECEIVEEDI command to retrieve EDI-formatted files from an Information Exchange 
mailbox. Using this command does not guarantee that you receive only EDI data. For more infor-
mation on receiving EDI data, see Chapter 7, “Sending and receiving EDI data.’’

Syntax

receiveedi

alias(alias) aliasname(alias name)
or

sysid(system ID) account(account)  userid(user ID)
or

account(account)  userid(user ID)
or

listname(list name)
or

requeued(n|y)

fileid(class) class(class) archiveid(archive ID)
multfiles(n|y) origfile(n|y)
ediopt(y|n|f) recordsize(record size) translate(translate table)
allfiles(y|n) edionly(n|y) msgkey(message key)
startdate(starting date) starttime(starting time)
enddate(ending date) endtime(ending time) timezone(l|g) wait(wait time);

RECEIVEEDI command example
The following is an example of the RECEIVEEDI command:

receiveedi fileid(orders.fil) class(#e2);

Results: Files with a user class of #e2 are received in file orders.fil with CRLF characters 
inserted after EDI segments. If more than one such file exists in the mailbox, Expedite Base for 
Windows appends it to orders.fil.

You can use the CLASS parameter to make sure you are receiving EDI data. To do so, you and 
your trading partner must agree on a name for the EDI data. Your trading partner must specify 
that name in the user CLASS parameter when sending the data, and you must specify that name in 
the CLASS parameter on the RECEIVEEDI command. The following example shows a RECEIVEEDI 
command using the CLASS parameter to receive all the files with the class “editest” from the 
mailbox:

receiveedi fileid(edidata.fil) class(editest);

You can also use the EDIONLY parameter to receive the data marked in the CDH as EDI data. If 
your trading partner sent the data with an interface that supports the DFORMAT field in the CDH, 
the CDH will be marked properly. Expedite interfaces before Release 3.0 do not support the 
CDH.

NOTE: If you are using supported data compression software and 
receive compressed data, not all parameters are supported. See 
Appendix E, “Using data compression,’’, for more information.
215



Expedite Base for Windows Programming Guide

Working with message commands
The following example shows a RECEIVEEDI command using the EDIONLY parameter to receive 
all the mailbox files that are marked in the CDH as EDI data:

receiveedi fileid(edidata.fil) edionly(y);

If you receive a file whose CDH indicates that the file is not EDI data, Expedite Base for 
Windows receives the file in the format indicated by the CDH. If the data type is not indicated in 
the CDH, or no CDH is present, Expedite Base for Windows examines the data to determine the 
EDI data type. If the file is not recognized as EDI data, Expedite Base for Windows receives the 
file without reformatting records. For more information, see Appendix B, “Common data 
header.’’

The message response records associated with the RECEIVEEDI command are the RECEIVED 
record and the RETURN record.

Parameters
alias

Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to identify the user from whom you 
are receiving data.

If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to identify the user from 
whom you are receiving data. If you specify an ALIASNAME parameter, you must specify an 
ALIAS parameter. Use 1 to 16 alphanumeric characters.

sysid
Indicates the system ID of a user on another system from whom you are receiving data. You 
need the system ID only if you specify the ACCOUNT and USERID parameters for a user on 
another system. If you specify a SYSID parameter, you must specify the ACCOUNT and 
USERID parameters. Use 1 to 3 alphanumeric characters.

account
Indicates the account of an Information Exchange user from whom you are receiving data. 
Expedite Base for Windows uses this field in conjunction with the USERID parameter to 
identify the user. If you specify an ACCOUNT parameter, you must specify a USERID 
parameter. Use 1 to 8 alphanumeric characters.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.

NOTE: You can create and maintain alias tables in two ways:

■ Using Information Exchange Administration Services; see the 
Information Exchange Administration Services User’s Guide.

■ Using the DEFINEALIAS command; see “DEFINEALIAS 
command” on page 188.
216



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
userid
Indicates the user ID of an Information Exchange user from whom you are receiving data. 
Expedite Base for Windows uses this field in conjunction with the ACCOUNT parameter to 
identify the user. If you specify a USERID parameter, you must specify an ACCOUNT 
parameter. Use 1 to 8 alphanumeric characters.

listname
Indicates the name of a list of accounts and user IDs. Expedite Base for Windows uses this 
field to identify a list of users from whom you are receiving data. Use 1 to 8 alphanumeric 
characters.

requeued
Indicates whether Expedite Base for Windows receives files retrieved from archive only.

fileid
Indicates the name of the file where Expedite Base for Windows places the received data. 
Use 1 to 128 alphanumeric characters.

class
Indicates the user class of the files to receive. You can limit the files you receive to files with 
this user class.

You can use a question mark as a wildcard for any character or characters. For example, to 
receive all files whose user class begins with AB1, type AB1?

To receive all files with a user class ending with 999, type ?999.

Use 1 to 8 alphanumeric characters. The default value is blank, which indicates all user 
classes. It is recommended that you use the CLASS parameter when you receive files.

If the EDI data is sent with a SENDEDI command using the default user class, it arrives in 
your Information Exchange mailbox classified as follows:

To receive only the EDI files sent with the default user class, type #E?

archiveid
Indicates the archive reference identifier you want Information Exchange to assign to the 
files you receive. If your Information Exchange profile indicates that archiving is enabled, 
then Information Exchange will save the file in archive with this archive ID. You can use this 
archive ID on the ARCHIVEMOVE command later to place a copy of this file back in your 
mailbox. Use 1 to 8 alphanumeric characters.

n Receive any file in your mailbox. This is the default.

y Receive files retrieved from archive only. If you specify y, you cannot specify an 
Information Exchange source ID such as account and user ID, or alias and alias 
name.

#EE EDIFACT data

#EU UN/TDI data

#E2 X12 data

#EC UCS data
217



Expedite Base for Windows Programming Guide

Working with message commands
multfiles
Determines whether the files you receive are put into separate files or are concatenated into 
one file.

origfile

Indicates whether you want to receive data into a file using the original name from the 
sending system.

N Concatenate all received files into a single file. This is the default value.

Y Create a new separate file for the second and subsequent files. New files are 
named by adding a numbered extension starting with .002.  

The new extension will be added after any existing extension on the file name; 
any original extension will not be truncated. If more than 999 files are received, 
the extension becomes four digits: .1000, .1001, .1002, and so on.  If more than 
9999 files are received, the extension becomes five digits: .10000, .10001, 
.10002, and so on.  If more than 99999 are received, the remaining files are 
appended to the file name in FILEID with the extension .ovf. For example, if 
you specify FILEID(testmsg) and three files are received, Expedite Base for 
Windows names the files as follows:

File 1 = testmsg
File 2 = testmsg.002
File 3 = testmsg.003

If you receive 1000 or more files, files 1001, 1002, and 1003 would be named as 
follows:

File 1001 = test.msg.1001
File 1002 = test.msg.1002
File 1003 = test.msg.1003

If you receive more than 99999 files, the data in the files after file 99999 is 
appended to a file with the extension of .ovf.

E

CAUTION: If you send a file with a file name greater than 54 characters, and your 
trading partner receives that file using the ORIGFILE(Y) parameter, the file name 
may be truncated based on the maximum file length that your trading partner’s 
version of Expedite can handle. 

For example, if you use Expedite Base for Windows 4.7 to send a file named 
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567
890.dat to a trading partner who is using Expedite Base/AIX or Expedite for 
Windows and receives the file with ORIGFILE(Y), the file name will be: 
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ12.  The 
file name refers to only the name of the file (and extension), and not its path.

n Receive all data into the file indicated by FILEID. This is the default.

y Receive the file into the original file name if the original file name specified in 
the CDH SENDERFILE is valid for a Windows file system.
218



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
ediopt
Indicates whether Expedite Base for Windows should split EDI data at the end of EDI 
segments.

recordsize
Indicates whether Expedite Base for Windows breaks EDI data into fixed-length records by 
placing carriage-return and line-feed (CRLF) characters in the data at specified intervals. 
This option is only active if EDIOPT is n.

translate
Indicates the name of a translate table that overrides normal EBCDIC-to-ASCII translation. 
Use 1 to 8 alphanumeric characters. Expedite Base for Windows appends the suffix .xlt to 
this value to produce the name of the file containing the translate table. If you do not use this 
parameter, Expedite Base for Windows uses the translate table specified on the TRANSMIT 
command. If no TRANSLATE table was specified, Expedite Base for Windows uses the 
default Information Exchange translation table.

allfiles
Indicates whether Expedite Base for Windows receives all files that match the RECEIVEEDI 
specifications or just the first file in the Information Exchange mailbox that matches the 
RECEIVEEDI specifications.

NOTE: Expedite Base for Windows will use the sender’s original 
file name from the CDH, SENDERFILE, to store the data received 
but does not use the original location, SENDERLOC, because the 
results may be undesirable for the receiver. For example, the 
receiver on Expedite Base for Windows may want to receive a file 
named config.sys but undesirable results may occur if the original 
location, c:\, was used by Expedite Base for Windows because 
c:\config.sys is an important system file on most user’s PCs. 
Instead, Expedite Base for Windows will use the location (path) 
specified in the FILEID parameter on the RECEIVE or RECEIVEEDI 
command.

y Split records at the end of EDI segments. If the CDH indicates that the infor-
mation received is not EDI data, this option is ignored. This is the default.

n Do not split records at the end of EDI segments. If the CDH indicates that the 
information received is not EDI data, this option is ignored.

f Attempt to split records at the end of EDI segments, regardless of what the CDH 
indicates. If the data is not valid EDI data, Expedite Base for Windows issues a 
warning.

000 Do not insert CRLF characters in the file. This is the default.

nnn Insert CRLF characters every nnn characters, where nnn is a number from 1 to 
999.

Note: This parameter does not do anything for files sent without a CDH. For more infor-
mation on the CDH, see Appendix B, “Common data header.’’

y Receive all files that match the RECEIVEEDI specifications. This is the default.

n Receive only the first file that matches the RECEIVEEDI specifications.
219



Expedite Base for Windows Programming Guide

Working with message commands
edionly
Specifies that you receive only EDI data.

msgkey
Indicates a unique message key you can use to receive a specific file from a mailbox. You 
can get this value from the AVAILABLE record in response to a QUERY command. Use 20 
characters.

startdate
Indicates the starting date of a time range for the files you want to receive from Information 
Exchange. For a file to qualify to be received, the date the file was sent to Information 
Exchange must fall within this date range.

Use the yymmdd or yyyymmdd format for the starting date. The default value is determined 
by Information Exchange and is currently 000102 (January 2, 1900).

If you limit the range to one day and an error occurs while sending the file, files could be left 
undetected in the mailbox. For example, assume that an error occurs while sending a file on 
June 11, 1998, and the file is not actually placed in the mailbox until 11:00 a.m. on June 12.

If you issue a RECEIVEEDI command at 8:00 a.m. on June 12, 1998 with a range of 00:00:00 
to 24:00:00 on June 11 specified, the file will not be received because it has not yet arrived 
in the mailbox. If you then issue another RECEIVEEDI command at 8:00 a.m. on June 13, 
1998 with a range of 00:00:00 to 24:00:00 on June 12 specified, the file will still not be 
received because its starting date of June 11 is outside the specified range.

To avoid missing any files, you should either move the starting date earlier, or periodically 
check your mailbox.

starttime
Indicates the starting time of a time range for the files you want to receive from Information 
Exchange. For a file to qualify to be received, the time the file was sent to Information 
Exchange must fall within this time range. The format is hhmmss. The default value is deter-
mined by Information Exchange and is currently 000000 (00:00:00).

n Receive all files from your mailbox that satisfy your RECEIVEEDI request. If the 
CDH indicates a file does not contain EDI data, Expedite Base for Windows 
receives the file, using the format indicated in the CDH. If a file does not have a 
CDH and is not recognizable as EDI data, Expedite Base for Windows receives 
the file without reformatting the records. This is the default.

y Receive only those files from your mailbox that are identified in the CDH as 
having one of the EDI formats.

NOTE: Information Exchange Administration Services displays 
the STARTTIME and ENDTIME as hhmmss, but Information 
Exchange actually stores a more precise value. Therefore, you 
should specify a STARTTIME two seconds earlier and an ENDTIME 
two seconds later than the time shown in baseout.msg and in 
Information Exchange Administration Services.
220



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
enddate
Indicates the ending date of a time range for the files you want to receive from Information 
Exchange. For a file to qualify to be received, the date the file was sent to Information 
Exchange must fall within this date range. Use the yymmdd or yyyymmdd format for the 
ending date. The default value is determined by Information Exchange and is currently 
420916 (September 16, 2042).

endtime
Indicates the ending time of a time range for files you want to receive from Information 
Exchange. For a file to qualify to be received, the time the file was sent to Information 
Exchange must fall within this time range. Use the hhmmss format for the ending time. The 
default value is determined by Information Exchange and is currently 235347 (23:53:47).

timezone
Indicates the time reference in the STARTTIME and ENDTIME parameters.

wait
Indicates the amount of time Expedite Base for Windows should wait for data to arrive in the 
mailbox. The format is mmss, where mm is from 02 to 05 minutes, and ss is from 00 to 59 
seconds. The maximum allowed time is 0500 (or 5 minutes). The minimum is 0200 (or 2 
minutes). This parameter is only supported if you specified COMMTYPE(a), (t), or (c) on the 
TRANSMIT command in basein.pro.

When a RECEIVEEDI is specified with the WAIT parameter, only the first file that meets the 
criteria specified on the RECEIVEEDI will be received. You need to specify an additional 
RECEIVEEDI command without the WAIT parameter to receive any subsequent files.

NOTE: Information Exchange Administration Services displays 
the STARTTIME and ENDTIME as HHMMSS, but Information 
Exchange actually stores a more precise value. Therefore, you 
should specify a STARTTIME two seconds earlier and an ENDTIME 
two seconds later than the time shown in baseout.msg and in 
Information Exchange Administration Services.

l Your local time, as specified on the TIMEZONE parameter of the IDENTIFY 
command. This is the default.

g Greenwich mean time (GMT).

NOTE: If you are using TCP/IP communications and the value 
specified for the TIMEOUT parameter on the TCPCOMM command is 
less than the value specified for the WAIT parameter, the value in 
TIMEOUT is used.              .
221



Expedite Base for Windows Programming Guide

Working with message commands
SEND command 
Use the SEND command to send a file to Information Exchange. The message response records 
associated with the SEND command are the SENT record and the RETURN record.

Syntax
send

alias(alias) aliasname(alias name)
or

sysid(system id) account(account) userid(user id)
or

account(account) userid(user id)
or

listname(list name)

fileid(class)  format(n|y)
class(class) mode(blank|t) priority(blank|i|p)
charge(1|2|3|4|5|6)
ack(blank|a|b|c|d|e|f|r) msgname(msg name)
msgseqno(message sequence number) datatype(a|b)
delimited(n|y) verify(n|y|f) description(description)
recfm(f|v) lrecl(record length) retain(time)
translate(translate table) compress(n|y|t)
destfile(destination file) destloc(destination location)
selectrcv(f|n);

SEND command example
The following is an example of the SEND command:

send fileid(test.fil) alias(ptb3) aliasname(mary) class(question);

Results: This command sends file test.fil to alias name mary in alias table ptb3. The file has a 
user class of question. The alias name mary must be defined in ptb3 so that Information 
Exchange can resolve the account and user ID.

Parameters
alias

Indicates the table type and table name of an alias table. Expedite Base for Windows uses 
this field in conjunction with the ALIASNAME parameter to identify the user to whom you are 
sending data.

blank An alias name was not used. This is the default.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.
222



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
If you specify an ALIAS parameter, you must specify an ALIASNAME parameter. Use 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name in the alias table you specified in the ALIAS parameter. Expedite Base 
for Windows uses this field in conjunction with the ALIAS parameter to identify the user to 
whom you are sending data. If you specify an ALIASNAME parameter, you must specify an 
ALIAS parameter. Use 1 to 16 alphanumeric characters.

sysid
Indicates the system ID of an Information Exchange user to whom you are sending data. You 
need the system ID only if you specify the ACCOUNT and USERID parameters for a user on 
another Information Exchange system. If you specify a SYSID parameter, you must specify 
the ACCOUNT and USERID parameters. Use 1 to 3 alphanumeric characters.

account
Indicates the account of an Information Exchange user to whom you are sending data. 
Expedite Base for Windows uses this field in conjunction with the USERID parameter to 
identify the user. If you specify an ACCOUNT parameter, you must specify a USERID 
parameter. Use 1 to 8 alphanumeric characters.

userid
Indicates the user ID of an Information Exchange user to whom you are sending data. 
Expedite Base for Windows uses this field in conjunction with the ACCOUNT parameter to 
identify the user. If you specify a USERID parameter, you must specify an ACCOUNT 
parameter. Use 1 to 8 alphanumeric characters.

listname
Indicates the name of a list of accounts and user IDs. Expedite Base for Windows uses this 
field to identify a list of users to whom you are sending data. Use 1 to 8 alphanumeric 
characters.

fileid
Indicates the name of the file you are sending. Use 1 to 128 alphanumeric characters.

format
Indicates whether you want to send the data as a file or in Expedite Base for Windows e-mail 
format. See “Sending and receiving e-mail” on page 58. 

class
Indicates the user class of the files you are sending. A receiver can use this name to receive 
only files of this class. Use 1 to 8 alphanumeric characters. If you specify FORMAT(Y), this 
defaults to FFMSG001. Otherwise, it defaults to blank.

NOTE: You can create and maintain alias tables in two ways:

■ Using Information Exchange Administration Services; see the
Information Exchange Administration Services User’s Guide.

■ Using the DEFINEALIAS command; see “DEFINEALIAS command” 
on page 188.

n Do not format the data as e-mail. This is the default.

y Format the data as Expedite Base for Windows e-mail. This implies fixed 79-
byte records.
223



Expedite Base for Windows Programming Guide

Working with message commands
mode
Indicates a test or normal file.

priority
Indicates the class of delivery service for this file.

charge
Indicates to Information Exchange how the sender wants to pay the file charges.

ack
Indicates what type of acknowledgment you want to receive. Information Exchange puts 
these acknowledgments in your mailbox.

For more information, see “Using acknowledgments” on page 267.

blank Normal file. This is the default.

t Test-mode file.

blank Normal priority. This is the default.

i Express delivery to those users who have continuous receive capability and are 
currently in session with Information Exchange. This file will be received before 
any other files with a lower priority. (Expedite Base for Windows does not 
support continuous receive capability.)

p High priority.

1 The receiver pays all charges.

2 The receiver pays all charges, if agreed to by the receiver. Otherwise, the sender 
and receiver split the charges.

3 The receiver pays all charges, if agreed to by the receiver. If not, the sender and 
receiver split the charges, if agreed to by the receiver. Otherwise, the sender 
pays all charges. This is the default.

4 The sender and receiver split the charges, if agreed to by the receiver. Otherwise, 
the sender pays all charges.

5 Indicates the sender and receiver split the charges.

6 Indicates the sender pays all charges.

blank No acknowledgment. This is the default.

a Information Exchange creates only purge acknowledgments.

b Information Exchange creates both receipt and delivery acknowledgments.

c Information Exchange creates both receipt and purge acknowledgments.

d Information Exchange creates only delivery acknowledgments.

e Information Exchange creates either purge or delivery acknowledgments.

f Information Exchange creates receipt acknowledgments and either purge or 
delivery acknowledgments.

r Information Exchange creates only receipt acknowledgments.
224



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
msgname
Indicates the name you assign the file as an identifier. Use 1 to 8 alphanumeric characters.

msgseqno
Indicates the control number you assign the file. Use 1 to 5 alphanumeric characters.

datatype
Indicates whether the data is text or binary. For more information on text and binary data, see 
Chapter 6, “Sending and receiving files.’’ 

delimited
Indicates whether data is delimited with CRLF characters.

The default value is y for text data and n for binary data.

verify
Indicates whether Expedite Base for Windows verifies that the receiver exists before sending 
the file.

description
Provides a free-format description of the file. Use 1 to 79 alphanumeric characters. The 
description is only available to receiving interfaces that support the CDH. For more infor-
mation on the CDH, see Appendix B, “Common data header.’’

recfm
Indicates the record format of the file. This parameter is primarily for documentation 
purposes. Expedite Base for Windows places this information in the CDH. Except for 
Expedite Base/VM, all Expedite programs ignore this parameter when receiving files. 
However, Expedite Base/VM can use it to format records when receiving files.

a Text data. This is the default.

b Binary data.

n Records are not delimited by CRLF characters.

y Records are delimited by CRLF characters. Expedite Base for Windows does 
not insert CRLF characters; it assumes that CRLF characters are already in the 
file.

n Do not verify that the receiver exists. This is the default.

y Verify that the receiver exists before sending the data.

f Verify that the receiver exists. If Information Exchange cannot verify whether 
the receiver exists (for example, if the receiver is on another Information 
Exchange system), send the data anyway.

NOTE: You are normally not charged to use the VERIFY 
parameter. However, in some circumstances you may incur a 
charge. See “Understanding validations, payment levels, and 
authorizations with trading partners” on page 276 for further 
information on charges.

f File has a fixed record format.

v File has a variable record format.
225



Expedite Base for Windows Programming Guide

Working with message commands
lrecl
Indicates the record length of the file. This parameter is primarily for documentation 
purposes. The record length field identifies record length across systems. Expedite Base for 
Windows places this information in the CDH. Except for Expedite Base/VM, all Expedite 
programs ignore this parameter when receiving files. However, Expedite Base/VM can use it 
to format records when receiving files. Valid values are 1 to 65535. The default value is 
blank.

retain
Indicates the number of days Information Exchange keeps the file in the mailbox if no one 
receives it. Valid values are blank and 0 through 180.

The maximum retention period and the default retention period can be different on different 
Information Exchange systems. These periods are system-dependent. The default retention 
period is determined when Information Exchange is installed. For installations in the U.S., 
the default retention period is 30 days. Contact your marketing representative for more infor-
mation on these values.

If you specify 0 or blank, Information Exchange retains the file for the default retention 
period. If you specify a retention period that is longer than the maximum retention period for 
your system, Information Exchange retains the file for the default retention period.

translate
Indicates the name of a translate table that overrides normal EBCDIC-to-ASCII translation. 
Use 1 to 8 alphanumeric characters. Expedite Base for Windows appends the suffix .xlt to 
this value to produce the name of the file containing the translate table. If you do not use this 
parameter, Expedite Base for Windows uses the translate table specified on the TRANSMIT 
command. If no TRANSLATE table was specified, Expedite Base for Windows uses the 
default Information Exchange translation table.

compress
Indicates whether the specified file should be compressed.

You must have the supported compression software installed if you specify COMPRESS(Y) or 
COMPRESS(T).

Some of the parameters of this command may not apply when sending compressed data. See 
Appendix E, “Using data compression,’’ for more information.

destfile
Indicates the file name to use in the common data header (CDH) as the original file name. If 
the receiver is using a workstation-based Expedite Base for Windows and specifies ORIGFILE 
(Y) on the RECEIVE or RECEIVEEDI command, Expedite Base for Windows uses this file 
name to store the data when it is received. If you specify a file name that is not valid on the 
receiver’s system, Expedite Base for Windows uses the file name in the FILEID parameter on 
the RECEIVE or RECEIVEEDI command. By default, Expedite Base for Windows determines 
the original file name from the FILEID parameter on the SEND, SENDEDI, or PUTMEMBER 
command. Use 1 to 128 characters.

n Do not compress the specified file. This is the default.

y Compress the specified file.

t For each sender/receiver pair, use the setting of the COMPRESS parameter (y or n) 
indicated in the cplookup.tbl file.
226



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
destloc
Indicates the file location to use in the common data header (CDH). When the file is 
received or the receiver’s mailbox is queried, Expedite Base for Windows uses the value in 
the RECEIVE or AVAILABLE record in the SENDERLOG parameter. By default, Expedite Base 
for Windows uses the file location in the sender’s system. Use 1 to 128 characters.

selectrcv
Indicates force receive search criteria.

When f is selected in SELECTRCV, the file being sent is marked in Information Exchange and 
cannot be received by a blanket receive. The file can only be received if the receiver 
specifies one of the following:

• Sender ID (account ID and user ID)

• Message class

• Message key

f Identifies this file for selective receive only.

n Turns off the selective-receive-only option. No special criteria is required to 
receive this file. This file can be received by a blanket receive. This is the 
default.
227



Expedite Base for Windows Programming Guide

Working with message commands
SENDEDI command 
Use the SENDEDI command to send an EDI-formatted file to Information Exchange. The file can 
contain X12, UCS, EDIFACT, or UN/TDI data; or any combination of these. For more infor-
mation on sending EDI data, see Chapter 7, “Sending and receiving EDI data.’’

The message response records associated with the SENDEDI command are the SENT and RETURN 
records.

Syntax

sendedi

fileid(class)  mode(blank|t)

priority(blank|i|p) charge(1|2|3|4|5|6) ack(blank|a|b|c|d|e|f|r)

msgname(message name) msgseqno(message sequence number) class(class)

verify(n|y|f|c|g) description(description) recfm(f|v)

lrecl(record length) retain(time) translate(translate table)

compress(n|y|t) destfile(destination file)

destloc(destination location) selectrcv(f|n);

SENDEDI command example
The following is an example of the SENDEDI command:

sendedi fileid(edi.fil) verify(c) retain(180);

Results: This command sends the file edi.fil to Information Exchange. Expedite Base for 
Windows uses the EDI headers in the data to determine the destination or destinations. Because 
no user class is specified on the SENDEDI command, Expedite Base for Windows will either use 
information from the EDI header as the user class or will assign a default user class depending on 
the EDI data type. See the CLASS parameter description for a table of EDI data types and the 
associated default user classes. Expedite Base for Windows will verify that the receiver exists 
before sending the data. If no one receives the file within 180 days, Information Exchange will 
delete the file.

Parameters
fileid

Indicates the name of the file you are sending. Use 1 to 128 valid Windows characters.

mode
Indicates a test or normal file.

blank Normal file. This is the default.

t Test-mode file.
228



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
priority
Indicates the class of delivery service for the file.

charge
Indicates to Information Exchange how the sender wants to pay the file charges.

ack
Indicates what type of acknowledgment you want to receive. Information Exchange puts 
these acknowledgments in your mailbox.

For more information, refer to see “Using acknowledgments” on page 267.

msgname
Indicates the name you assign the file as an identifier. Use 1 to 8 alphanumeric characters.

See “Providing a message name (MSGNAME)” on page 109 for more information on the 
default values of MSGNAME.

blank Normal priority. This is the default.

i Express delivery to those users who have the continuous receive capability and 
are currently in session with Information Exchange. This file will be received 
before any other files with a lower priority. (Expedite Base for Windows does 
not support continuous receive capability.)

p High priority.

1 The receiver pays all charges.

2 The receiver pays all charges, if agreed to by the receiver. Otherwise, the sender 
and receiver split the charges.

3 The receiver pays all charges, if agreed to by the receiver. If not, the sender and 
receiver split the charges, if agreed to by the receiver. Otherwise, the sender 
pays all charges. This is the default.

4 The sender and receiver split the charges, if agreed to by the receiver. Otherwise, 
the sender pays all charges.

5 Indicates the sender and receiver split the charges.

6 Indicates the sender pays all charges.

blank No acknowledgment. This is the default.

a Information Exchange creates only purge acknowledgments.

b Information Exchange creates both receipt and delivery acknowledgments.

c Information Exchange creates both receipt and purge acknowledgments.

d Information Exchange creates only delivery acknowledgments.

e Information Exchange creates either purge or delivery acknowledgments.

f Information Exchange creates receipt acknowledgments and either purge or 
delivery acknowledgments.

r Information Exchange creates only receipt acknowledgments.
229



Expedite Base for Windows Programming Guide

Working with message commands
msgseqno
Indicates the control number you assign the file. Use 1 to 5 alphanumeric characters.

See “Providing a message sequence number (MSGSEQNO)” on page 109 for more infor-
mation on the default values of MSGSEQNO.

class
Indicates the user class of the files you are sending. A receiver can use this name to receive 
only files of this class. Use 1 to 8 alphanumeric characters. If you do not specify the user 
class with either the CLASS parameter or the EDI envelope, the user class defaults as 
follows:

See “Providing a user class (CLASS)” on page 110 for more information on CLASS 
assignment.

verify
Indicates whether Expedite Base for Windows verifies that the receiver exists before sending 
the file.

This EDI data type: Uses this default user class:

X12 #E2

UCS #EC

UN/TDI #EU

EDIFACT #EE

n Do not verify that the receiver exists. This is the default.

y Verify that the receiver exists before sending the data. If the verification fails or the 
destination cannot be verified, the envelope is not sent. Furthermore, if there are 
multiple envelopes in the file, envelopes following the one with the error are not 
sent.

f Verify that the receiver exists before sending the data. If Information Exchange 
cannot tell whether the receiver exists (for example, if the receiver is on another 
system), send the data anyway. If the verification fails for an envelope destined for 
the same Information Exchange system as the sender, the envelope is not sent and 
if there are multiple envelopes in the file, envelopes following the one with the 
error are not sent.

c Verify that the receiver exists before sending the data. If the verification fails or the 
destination cannot be verified, the envelope is not sent. If there are multiple 
envelopes in the file, continue processing those envelopes following the one in 
error.

g Verify that the receiver exists before sending the data. If Information Exchange 
cannot tell whether the receiver exists (for example, if the receiver is on another 
system), send the data anyway. If verification fails for an envelope destined for the 
same Information Exchange system as the sender, the envelope is not sent. If there 
are multiple envelopes in the file, continue processing those envelopes following 
the one in error.
230



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
description
Provides a free-format description of the file. The description is available only to receiving 
interfaces that support the CDH. For more information on the CDH, see see Appendix B, 
“Common data header.’’ Use 1 to 79 alphanumeric characters.

recfm
Indicates the record format of the file. This parameter is primarily for documentation 
purposes. Expedite Base for Windows places this information in the CDH. Except for 
Expedite Base/VM, all Expedite programs ignore this parameter when receiving files. 
However, Expedite Base/VM uses it to format records when receiving files.

lrecl
Indicates the record length of the file. This parameter is primarily for documentation 
purposes. The record length field identifies record length across systems. Expedite Base for 
Windows places this information in the CDH. Except for Expedite Base/VM, all Expedite 
programs ignore this parameter when receiving files. However, Expedite Base/VM can use it 
to format records when receiving files. Valid values are 1 to 65535. The default value is 
blank.

retain
Indicates the number of days Information Exchange keeps the file in the mailbox if no one 
receives it. Valid values are blank and 0 through 180.

The maximum retention period and the default retention period can be different on different 
Information Exchange systems. These periods are system-dependent. The default retention 
period is determined when Information Exchange is installed. For installations in the U.S., 
the default retention period is 30 days. Contact your marketing representative for more infor-
mation on these values.

If you specify 0 or blank, Information Exchange retains the file for the default retention 
period. If you specify a retention period that is longer than the maximum retention period for 
your system, Information Exchange retains the file for the default retention period.

translate
Indicates the name of a translate table that overrides normal EBCDIC-to-ASCII translation. 
Use 1 to 8 alphanumeric characters. Expedite Base for Windows appends the suffix .xlt to 
this value to produce the name of the file containing the translate table. If you do not use this 
parameter, Expedite Base for Windows uses the translate table specified on the TRANSMIT 
command. If no TRANSLATE table was specified, Expedite Base for Windows uses the 
default Information Exchange translation table.

compress
Indicates whether the specified file should be compressed.

NOTE: You are normally not charged to use the VERIFY 
parameter. However, in some circumstances you may incur a 
charge. See “Understanding validations, payment levels, and 
authorizations with libraries” on page 271 for further information 
on charges.

f File has a fixed record format.

v File has a variable record format.

n Do not compress the specified file. This is the default.
231



Expedite Base for Windows Programming Guide

Working with message commands
You must have the supported compression software installed if you specify COMPRESS(Y) or 
COMPRESS(T).

Some of the parameters of this command may not apply when sending data. See Appendix 
E, “Using data compression,’’ for more information.

destfile
Indicates the file name to use in the common data header (CDH) as the original file name. If 
the receiver is using a workstation-based Expedite Base for Windows and specifies ORIGFILE 
(Y) on the RECEIVE or RECEIVEEDI command, Expedite Base for Windows uses this file 
name to store the data when it is received. If you specify a file name that is not valid on the 
receiver’s system, Expedite Base for Windows uses the file name in the FILEID parameter on 
the RECEIVE or RECEIVEEDI command. By default, Expedite Base for Windows determines 
the original file name from the FILEID parameter on the SEND, SENDEDI, or PUTMEMBER 
command. Use 1 to 128 characters.

destloc
Indicates the file location to use in the common data header (CDH). When the file is 
received or the receiver’s mailbox is queried, Expedite Base for Windows uses the value in 
the RECEIVE or AVAILABLE record in the SENDERLOG parameter. By default, Expedite Base 
for Windows uses the file location in the sender’s system. Use 1 to 128 characters.

selectrcv
Indicates force receive search criteria.

When f is selected in SELECTRCV, the file being sent is marked in Information Exchange and 
cannot be received by a blanket receive. The file can only be received if the receiver 
specifies ONE of the following:

• Sender ID (account ID and user ID)
• Message class
• Message key

y Compress the specified file.

t For each sender/receiver pair, use the setting of the COMPRESS parameter (y or n) 
indicated in the cplookup.tbl file.

f Identifies this file for selective receive only.

n Turns off the selective-receive-only option. No special criteria is required to 
receive this file. This file can be received by a blanket receive. This is the 
default.
232



Chapter 9. Using Expedite Base for Windows message commands

Working with message commands
START command 
Use the START command to begin an Information Exchange session. If Information Exchange 
successfully starts the session, Expedite Base for Windows returns a session start key in the 
RETURN response record. The message response record associated with the START command is 
the RETURN record.

Syntax
start

account(IE account) userid(IE user ID)
iepassword(IE password) niepassword(new IE password)
check(y|n) 

keyringfile(KDB file) keyringpassword(password) 
OR
keyringfile(KDB file) keyringstashfile(application ID);

START command example
The following is an example of the START command:

start account(acct) userid(user01) iepassword(mypswd)
keyringfile(keyring.kdb) keyringpwd(mykeypswd);

Results: This command starts an Information Exchange session manually for Information 
Exchange account acct and user ID user01. The password mypswd is used to log on to Infor-
mation Exchange, and the keyringfile name and password are used to access SSL information.

Parameters
account

Indicates the account of an Information Exchange user. Expedite Base for Windows uses this 
field in conjunction with the USERID parameter to identify the user. If you specify an 
ACCOUNT parameter, you must specify a USERID parameter. Use 1 to 8 alphanumeric 
characters. The default is the IEACCOUNT value of the IDENTIFY command.

userid
Indicates the user ID of an Information Exchange user. Expedite Base for Windows uses this 
field in conjunction with the ACCOUNT parameter to identify the user. If you specify a 
USERID parameter, you must specify an ACCOUNT parameter. Use 1 to 8 alphanumeric 
characters. The default is the IEUSERID value of the IDENTIFY command.

iepassword
Indicates the Information Exchange password. Use 1 to 8 alphanumeric characters. The 
default is the IEPASSWORD of the IDENTIFY command.

NOTE: If you specify AUTOSTART(Y) in basein.pro to tell Expedite 
Base for Windows to start the Information Exchange session 
automatically, you don’t need to specify START in basein.msg. 
Specifying START in basein.msg results in an error if you use y as the 
AUTOSTART value in basein.pro.
233



Expedite Base for Windows Programming Guide

Working with message commands
niepassword
Indicates the new Information Exchange password. If you specify this value, the Information 
Exchange password changes upon completion of the next Information Exchange session. If 
the Information Exchange session ends in an error, the password does not change. Use 1 to 8 
alphanumeric characters.

check
Indicates to Expedite Base for Windows that you only want to check the status of the 
previous session. If you specify CHECK on the START command, do not specify any other 
commands except the END command in the input file.

keyringfile
The name of the kdb file that contains the certificate. This applies to TCP/IP communication 
performed with SSL enabled. Either keyringpassword or keyringstashfile is required with this 
parameter. This field can be a maximum of 256 characters.

keyringpassword 
The kdb file password. This value is not case sensitve. It can be from 1 to 128 characters in 
length. If you use this parameter, do not use keyringstashfile.

keyringstashfile 
The name of the stashfile that stores the password for the keyringfile parameter. This value is 
associated to a specific certificate. If you use this parameter, do not use keyringpassword.

The valid values are the values that you used when you defined the application ID using 
iKEYMAN. This field can be from 1 to 100 characters in length.

NOTE:  If you are an ESO user, your password must conform to 
ESO rules. See “Selecting the Extended Security Option” on page 
174 for more information.

y Check the status of the previous session.

n Do not check the status of the previous session; start a session as usual. This is 
the default.
234



© Copyright GXS, Inc. 1998, 2005
Chapter 10
Using Expedite Base for Windows message 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
response records

To verify the completion or partial completion of message or profile commands, you need to 
understand the information in the response records. This chapter describes the response records 
and provides examples.

When Expedite Base for Windows processes basein.msg, it echoes message commands, along 
with their response records and associated return codes, to baseout.msg.

The message response records are:

■ AUTOEND, page 237

This record indicates that an Information Exchange session ended automatically.

■ AUTOSTART, page 238

This record indicates that an Information Exchange session started automatically.

■ AVAILABLE, page 239

This record provides information about files in your Information Exchange mailbox. 
Expedite Base for Windows writes this record as a result of the QUERY command.

■ LIBRARYLIST, page 243

This record provides the results of the LISTLIBRARIES command.

■ MEMBERLIST, page 245

This record provides the results of the LISTMEMBERS command.

■ MEMBERPUT, page 247

This record is a response to the PUTMEMBER command. It provides information about a 
member placed in the library.
235



Expedite Base for Windows Programming Guide
■ MOVED, page 248

This record tells you how many files Information Exchange copied from archive as a result 
of an ARCHIVEMOVE command.

■ NOTSENT, page 249

This record provides information on the data that could not be sent when a destination verifi-
cation failure occurs with the SENDEDI command.

■ RECEIVED, page 251

This record provides information on the data received with a RECEIVE or RECEIVEEDI 
command.

■ RETURN, page 257

This record indicates the completion of a command in basein.msg.

■ SENT, page 258

This record provides information on the data sent with a SEND or SENDEDI command.

■ SESSIONEND, page 260

This record indicates the final return code from Expedite Base for Windows. This is the last 
record in baseout.msg.

■ STARTED, page 261

This record provides information about the current Information Exchange session and the 
prior Information Exchange session. This is the last record in baseout.msg.

■ WARNING, page 262

This record indicates a minor problem that did not stop the command from finishing, but 
which should be noted.
236



Chapter 10. Using Expedite Base for Windows message response records

AUTOEND record
AUTOEND record 
The AUTOEND record indicates that Expedite Base for Windows ended the Information Exchange 
session automatically.

Format
AUTOEND;
237



Expedite Base for Windows Programming Guide

AUTOSTART record
AUTOSTART record 
The AUTOSTART record indicates that Expedite Base for Windows started an Information 
Exchange session automatically.

Format
AUTOSTART SESSIONKEY(session key);
STARTED LASTSESS(0|1) RESPCODE(code)
SESSIONKEY(session key) IEVERSION(version)
IERELEASE(release);

Parameters
sessionkey

Indicates the unique identifier for this Information Exchange session. This is also used as the 
archive ID for files that are archived and for which you did not specify ARCHIVEID on the 
RECEIVE command. SESSIONKEY is 8 alphanumeric characters.

lastsess
Indicates the status of the previous session.

respcode
Indicates the Information Exchange response code for the current session (not the previous 
session). These codes are interpreted for you by Expedite Base for Windows, so if it is not 0 
and not 2, you will get a SESSIONEND return code from Expedite Base for Windows 
indicating the problem. RESPCODE is 5 digits, padded on the left with zeros.

sessionkey
Indicates the unique identifier for this Information Exchange session. This is also used as the 
archive ID for files that are archived and for which you did not specify ARCHIVEID on the 
RECEIVE command. SESSIONKEY is 8 alphanumeric characters.

ieversion
Indicates the version of Information Exchange. Levels of Information Exchange are tracked 
as V.R where V is the version, a major enhancement in the service, and where R is the release, 
a minor enhancement. IEVERSION is 2 digits, padded on the left with zeros.

ierelease
Indicates the release of Information Exchange. Levels of Information Exchange are tracked 
as V.R where V is the version, a major enhancement in the service, and where R is the release, 
a minor enhancement. IERELEASE is 2 digits, padded on the left with zeros.

0 Indicates the last session was successful.

1 Indicates the last session was not successful.
238



Chapter 10. Using Expedite Base for Windows message response records

AVAILABLE record
AVAILABLE record 
The AVAILABLE record contains information describing a message. When you use the QUERY 
command, Expedite Base for Windows produces an AVAILABLE record for every message in the 
mailbox. All the parameters shown here may not be included with every AVAILABLE record 
because Expedite Base for Windows does not write parameters with blank values and because 
some parameters come from the common data header (CDH). If you specify CDH(Y) on the 
QUERY command for a file that has no CDH, the CDH parameters contain default values.

Format
AVAILABLE
SYSID(system ID) ACCOUNT(account) USERID(user ID)
or
ACCOUNT(account) USERID(user ID)
MSGKEY(message key) CLASS(class) MODE(t) MSGDATE(message date)
MSGDATELONG(message date long format) MSGTIME(message time)
MSGNAME(message name) MSGSEQNO(message sequence number)
LENGTH(length) SYSNAME(system name) SYSLEVEL(system level)
DATATYPE(a|b) EDITYPE(EDI type)
SENDERFILE(sender file) SENDERLOC(sender location) FILEDATE(file date)
FILEDATELONG(file date long format) FILETIME(file time)
RECFM(record format) RECLEN(record length) RECDLM(c|e|l|n|u)
DESCRIPTION(description)  UNIQUEID(unique ID) CODEPAGE(code page)
SYSTYPE(01|10|11|12|14|15|16|17|20|21|30|31|40|44|80|90)
SYSVER(system version) TRANSLATE(translate table)
COMSW(compression software name) COMVER(compression software version)
COMFILE(name of compressed file);

Expedite Base for Windows does not display the following parameters if you specify CDH(N) on 
the QUERY command: 

Parameters
sysid

Indicates the system ID of the user who sent the file. This parameter contains 1 to 3 alphanu-
meric characters.

account
Indicates the account of the user who sent the file. This parameter contains 1 to 8 alphanu-
meric characters.

userid
Indicates the user ID of the user who sent the file. This parameter contains 1 to 8 alphanu-
meric characters.

msgkey
Indicates a unique identifier assigned to the file by Information Exchange. You can use this 
value for the MSGKEY parameter on the RECEIVE or RECEIVEEDI command to receive only a 
specific file. This parameter contains 20 characters.

DATATYPE EDITYPE SENDERFILE SENDERLOC FILEDATE

FILEDATELONG FILETIME RECDLM DESCRIPTION UNIQUEID

CODEPAGE SYSTYPE SYSVER COMVER COMFILE

RECFM RECLEN TRANSLATE COMSW
239



Expedite Base for Windows Programming Guide

AVAILABLE record
class
Indicates the user class of the data specified by the sender to identify the data. This 
parameter contains 1 to 8 alphanumeric characters.

mode
Indicates the network data class field for this data. The sender specifies this value on the 
SEND or SENDEDI command. If this is not a test-mode file, Expedite Base for Windows does 
not write this parameter.

msgdate
Indicates the date Expedite Base for Windows placed the file in Information Exchange. The 
format is yymmdd. This parameter contains 6 numeric characters.

msgdatelong
Indicates the date Expedite Base for Windows placed the file in Information Exchange. The 
format is yyyymmdd. This parameter contains 8 numeric characters.

msgtime
Indicates the time Expedite Base for Windows placed the file in Information Exchange. The 
format is hhmmss. This parameter contains 6 numeric characters.

msgname
Indicates the name of the file specified by the sender. This parameter contains 1 to 8 alpha-
numeric characters.

msgseqno
Indicates the sequence number assigned by the sender as a file control number for this data. 
This parameter contains 1 to 5 alphanumeric characters.

length
Indicates the length of the data in the Information Exchange mailbox. The length of the file 
received may be different from the length of the file sent because of reformatting. This 
parameter contains 1 to 10 characters.

sysname
Indicates the name of the interface that sent the data. This parameter contains 1 to 8 alphanu-
meric characters.

syslevel
Indicates the level of the system that sent the data. This parameter contains 1 to 4 alphanu-
meric characters.

datatype
Indicates whether the data is text or binary.

editype
Indicates the type of EDI data available: X12, UCS, UN/TDI, EDIFACT, or unformatted. 
This parameter contains 3 to 11 alphanumeric characters.

t Indicates a test-mode file.

a Text

b Binary
240



Chapter 10. Using Expedite Base for Windows message response records

AVAILABLE record
senderfile
Indicates the original file name of the file on the sender’s system. This parameter contains 1 
to 128 valid Windows characters.

senderloc
If the sending system was a workstation, then this contains the directory where the file was 
stored on the sender’s system. This parameter contains 1 to 128 valid Windows characters.

filedate
Indicates the date that the file was created or last modified on the sender’s system. The 
format is yymmdd. This parameter contains 6 numeric characters.

filedatelong
Indicates the date that the file was created or last modified on the sender’s system. The 
format is yyyymmdd. This parameter contains 8 numeric characters.

filetime
Indicates the time that the file was created or last modified on the sender’s system. The 
format is hhmmss. This parameter contains 6 numeric characters.

recfm
Indicates the record format of the file on the sender’s system. If the record format is not 
appropriate for the sending machine, for example if the sending machine is a PC, the value is 
????. This parameter contains 1 to 4 alphanumeric characters.

reclen
Indicates the original record length of the file. This parameter contains 1 to 5 numeric 
characters.

recdlm
Indicates the method used to delimit the records.

description
Provides a free-format description of the data written by the sender. This parameter contains 
1 to 79 alphanumeric characters.

uniqueid
Indicates the random ID assigned to the file by the sending interface. It can help you identify 
the file and also help you associate acknowledgments with the file. This parameter contains 
8 alphanumeric characters.

codepage
Indicates the code page used by the sending system to determine the character representation 
of the data. This parameter contains 3 numeric characters.

c CRLF character delimiters.

e EDI characters delimit the records.

l 2-byte length precedes each record.

n Either the records have no delimiters or the CDH does not indicate the type of 
delimiter.

u Unknown delimiters. Expedite handles delimiter processing as if there was no 
CDH. That is, there will be no delimiter processing while the data is being 
received.
241



Expedite Base for Windows Programming Guide

AVAILABLE record
systype
Indicates the type of system that sent the data. This parameter contains 2 hexadecimal digits. 
See the Information Exchange Administration Services User’s Guide for relevant system 
type codes.

sysver
Indicates the software version of the Expedite system sending the data. This parameter 
contains 1 to 3 numeric characters.

translate
Indicates the ASCII-to-EBCDIC translate table used to send this file to Information 
Exchange. This parameter contains 1 to 8 alphanumeric characters.

comsw
Indicates the name of the compression software package used to compress the file. This 
parameter contains 10 alphanumeric characters.

comver
Indicates the version of the compression software package used to compress the file. This 
parameter contains 1 to 5 alphanumeric characters.

comfile
Indicates the name of the compressed file. This parameter contains 1 to 54 valid Windows 
characters.
242



Chapter 10. Using Expedite Base for Windows message response records

LIBRARYLIST record
LIBRARYLIST record 
The LIBRARYLIST record returns information requested by the LISTLIBRARIES command. Each 
record contains information specific to that library. Only the information you are authorized to 
see about libraries is returned. Parameters with blank values are not included. No LIBRARYLIST or 
other response records are written to the message response file if no libraries are found that 
match the criteria you specified.

Format
LIBRARYLIST
OWNER(library owning account) OWNUSERID(owner’s user ID)
LIBRARY(library name) MEMBERS(number of members)
DESCRIPTION(description) CREATEDATE(creation date)
CREATEDATELONG(creation date long format) CREATETIME(creation time)
UPDATEDBY(ID of last user) UPDATEDATE(date of last update)
UPDATEDATELONG(date of last update long format)
UPDATETIME(time of last update) WRITEAUTH(P|O|G|L)
WRITELIST(write distribution list) READAUTH(P|O|G|L)
READLIST(read distribution list) SEARCHABLE(Y|N)
OWNERPAYS(Y|N);

Parameters
owner

Indicates the account that owns the library. This parameter contains 1 to 8 alphanumeric 
characters.

ownuserid
Indicates the user ID of the owner of the library. This parameter contains 1 to 8 alphanu-
meric characters.

library
Indicates the name of the library. This parameter contains 1 to 8 alphanumeric characters.

members
Indicates the number of members present in the library. This parameter contains 1 to 4 
characters.

description
Provides a free-format description of the library. This parameter contains 1 to 79 alphanu-
meric characters.

createdate
Indicates the date the library was created. The format is yymmdd. Information Exchange 
adjusts the date to that of your local time zone. This parameter contains 6 numeric 
characters.

createdatelong
Indicates the date the library was created. The format is yyyymmdd. Information Exchange 
adjusts the date to that of your local time zone. This parameter contains 8 numeric 
characters.

createtime
Indicates the time the library was created. The format is hhmmss. Information Exchange 
adjusts the time to that of your local time zone. This parameter contains 6 numeric 
characters.
243



Expedite Base for Windows Programming Guide

LIBRARYLIST record
updatedby
Indicates the account ID and user ID, separated by at least one blank, of the user who last 
redefined this library. This parameter contains 3 to 17 alphanumeric characters.

updatedate
Indicates the date the library was last redefined. The format is yymmdd. Information 
Exchange corrects the date to that of your local time zone. This parameter contains 6 
numeric characters.

updatedatelong
Indicates the date the library was last redefined. The format is yyyymmdd. Information 
Exchange corrects the date to that of your local time zone. This parameter contains 8 
numeric characters.

updatetime
Indicates the time the library was last redefined. The format is hhmmss. Information 
Exchange adjusts the time to that of your local time zone. This parameter contains 6 numeric 
characters.

writeauth
Indicates the authority type for update access to the library.

writelist
Indicates the name of a permanent distribution list that details the users who can update the 
library. This parameter contains 1 to 8 alphanumeric characters.

readauth
Indicates the authority type for read access to the library.

readlist
Indicates the name of a permanent distribution list that details the users who can use the 
library. This parameter contains 1 to 8 alphanumeric characters.

searchable
Contains Y if the library is searchable and N if it is not searchable.

ownerpays
Indicates whether the owner of the library is responsible for charges associated with trans-
ferring the library member from the user’s mail box to the user’s system when the library 
member is retrieved. These are usually called RECEIVE-SIDE charges.

p Only the owner can update this library.
o Only users with the same account can update this library.
g Any user can update this library.
l Any user named in the WRITELIST parameter can update this library.

p Only the owner can read this library.
o Only users with the same account can read this library.
g Any user can read this library.
l Any user in the list named in the READLIST parameter can read this library.

y The owner of the library pays the receive-side charges.
n The receive-side charges will be charged to you.
244



Chapter 10. Using Expedite Base for Windows message response records

MEMBERLIST record
MEMBERLIST record 
The MEMBERLIST record returns information requested by the LISTMEMBERS command. Each 
record contains information specific to that member. Parameters with blank values are not 
included.

Format
MEMBERLIST
MEMBER(member name) DESCRIPTION(description)
CREATEDBY(user’s ID) CREATEDATE(creation date)
CREATEDATELONG(creation date long format) CREATETIME(creation time)
UPDATEDBY(ID of last user) UPDATEDATE(date of last update)
UPDATEDATELONG(date of last update long format)
UPDATETIME(time of last update) LENGTH(file length);

Parameters
member

Indicates the name of a library member. This parameter contains 1 to 8 alphanumeric 
characters.

description
Provides a free-format description of the member. This parameter contains 1 to 79 alphanu-
meric characters.

createdby
Indicates, in a fixed format, the system ID, account ID, and user ID of the user that created 
this library member. The first 4 characters are the system ID (and may be blank), the next 8 
characters are the account ID, and the last 8 characters are the user ID.

createdate
Indicates the date the library was created. The format is yymmdd. Information Exchange 
adjusts the date to that of your local time zone. This parameter contains 6 numeric 
characters.

createdatelong
Indicates the date the library was created. The format iss yyyymmdd. Information Exchange 
adjusts the date to that of your local time zone. This parameter contains 8 numeric 
characters.

createtime
Indicates the time the library was created. The format is hhmmss. Information Exchange 
adjusts the time to that of your local time zone. This parameter contains 6 numeric 
characters.

updatedby
Indicates the account ID and user ID, separated by at least one blank, of the user who last 
redefined this library. This parameter contains 3 to 17 alphanumeric characters.

updatedate
Indicates the date the library was last redefined. The format is yymmdd. Information 
Exchange corrects the date to that of your local time zone. This parameter contains 6 
numeric characters.
245



Expedite Base for Windows Programming Guide

MEMBERLIST record
updatedatelong
Indicates the date the library was last redefined. The format is yyyymmdd. Information 
Exchange corrects the date to that of your local time zone. This parameter contains 8 
numeric characters.

updatetime
Indicates the time the library was last redefined. The format is hhmmss. Information 
Exchange adjusts the time to that of your local time zone. This parameter contains 6 numeric 
characters.

length
Indicates the length of the file placed in the library. This parameter contains 1 to 8 numeric 
characters.
246



Chapter 10. Using Expedite Base for Windows message response records

MEMBERPUT record
MEMBERPUT record 
The MEMBERPUT record returns information about a member placed in an Information Exchange 
library. All the parameters shown here may not be included in every MEMBERPUT record because 
Expedite Base for Windows does not write parameters with blank values. No MEMBERLIST or 
other response records are written to the message response file if the user has no authority to 
access the library.

Format
MEMBERPUT
OWNER(owner) LIBRARY(library) MEMBER(member)
UNIQUEID(unique ID) LENGTH(length);

Parameters
owner

Indicates the account that owns the library. This parameter contains 1 to 8 alphanumeric 
characters.

library
Indicates the name of the library. This parameter contains 1 to 8 alphanumeric characters.

member
Indicates the name of the member. This parameter contains 1 to 8 alphanumeric characters.

uniqueid
Indicates the random ID assigned by Expedite Base for Windows to identify the member. 
This parameter contains 8 alphanumeric characters.

length
Indicates the length of the file placed in the library. This parameter contains 1 to 8 numeric 
characters.
247



Expedite Base for Windows Programming Guide

MOVED record
MOVED record 
The MOVED record indicates how many files Information Exchange copied from short-term 
archive to your Information Exchange mailbox as a result of an ARCHIVEMOVE command.

Format
MOVED
NUMBER(number);

Parameters
number

Indicates the number of files copied from short-term archive to your Information Exchange 
mailbox. If this value is zero, no files in the archive match the ARCHIVEID you specified on 
the ARCHIVEMOVE command, or you already copied the files and they are in your mailbox. 
This parameter contains 1 to 5 numeric characters.
248



Chapter 10. Using Expedite Base for Windows message response records

NOTSENT record
NOTSENT record 
Expedite Base for Windows produces a NOTSENT record for every EDI envelope that could not be 
sent due to a destination verification failure. NOTSENT records are produced only when the 
VERIFY parameter of the SENDEDI command is set to c or g.

Because parameters with blank values do not print, Expedite Base for Windows might not 
include all the parameters listed below with each NOTSENT record.

Format
NOTSENT
ALIAS(alias)  ALIASNAME(alias name)
or
SYSID(system ID) ACCOUNT(account) USERID(user ID)
or
ACCOUNT(account)  USERID(user ID)
or
LISTNAME(list name)

EDITYPE(datatype) DESTINATION(destination) QUALIFIER(qualifier)
CONTROLNUM(control number) CLASS(class) MSGNAME(message name)
MSGSEQNO(message sequence no);

Parameters
alias

Indicates the alias table type and table name of the Information Exchange destination.

This parameter contains 1 to 4 characters.

aliasname
Indicates the alias name defined in the alias table. This parameter contains 1 to 16 alphanu-
meric characters.

sysid
Indicates the system ID of the Information Exchange destination. This parameter contains 1 
to 3 alphanumeric characters.

account
Indicates the account of the Information Exchange destination. This parameter contains 1 to 
8 alphanumeric characters.

userid
Indicates the user ID of the Information Exchange destination. This parameter contains 1 to 
8 alphanumeric characters.

listname
Indicates the name of a previously-defined list of account and user IDs used as the Infor-
mation Exchange destination. This parameter contains 1 to 8 alphanumeric characters.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.
249



Expedite Base for Windows Programming Guide

NOTSENT record
editype
Indicates the type of EDI data that would have been sent, had the destination verification 
failure not occurred:  X12, UCS, UN/TDI, or EDIFACT. This parameter contains 1 to 7 
alphanumeric characters.

destination
Indicates the destination specified in the EDI data. This parameter contains 1 to 35 alphanu-
meric characters.

qualifier
Indicates the EDI qualifier for the destination. This parameter contains 1 to 4 alphanumeric 
characters.

controlnum
Indicates the Interchange Control Number from the X12 or UCS data. For UN/TDI data, this 
is the SNRF element. For EDIFACT data, it is the data element 0020 (Interchange Control 
Reference). This parameter contains 1 to 14 alphanumeric characters.

class
Indicates the user class obtained from the EDI data, the CLASS parameter, or the default. This 
parameter contains 1 to 8 alphanumeric characters. 

msgname
Indicates the message name obtained from the EDI data or the MSGNAME parameter. This 
parameter contains 1 to 8 alphanumeric characters.

msgseqno
Indicates the message sequence number obtained from the MSGSEQNO parameter or 
generated by Expedite Base for Windows. This parameter contains 1 to 5 alphanumeric 
characters.
250



Chapter 10. Using Expedite Base for Windows message response records

RECEIVED record
RECEIVED record 
The RECEIVED record contains information describing a file or EDI envelope. Expedite Base for 
Windows produces a RECEIVED record for every file or EDI envelope received from Information 
Exchange. All the parameters shown here may not be included in every RECEIVED record because 
Expedite Base for Windows does not write parameters with blank values and because the sender 
may not have provided some parameters.

Format
RECEIVED
ALIAS(alias) ALIASNAME(alias name)
or
SYSID(system ID) ACCOUNT(account) USERID(user ID)
or
ACCOUNT(account) USERID(user ID)
RECEIVER(receiver ID) RECVQUAL(receiver qualifier) SENDER(sender ID)
SENDQUAL(sender qualifier) CONTROLNUM(control number)
CLASS(class) MODE(mode) PRIORITY(a|i|p) CHARGE(1|5|6) ACK(D)
LENGTH(file length) FILEID(file ID) MSGDATE(message date)
MSGDATELONG(message date long format) MSGTIME(message time)
MSGSEQO(IE message number) MSGNAME(message name) MSGSEQNO(msg
       sequence number)
SESSIONKEY(session key) DELIMITED(l|e|n)
SYSNAME(system name) SYSLEVEL(system level)
STARTDATE(starting date) STARTTIME(starting time) ENDDATE(ending date)
ENDTIME(ending time) TIMEZONE(l|g)
DATATYPE(data type) EDITYPE(EDI type) SENDERFILE(sender file)
SENDERLOC(sender location) FILEDATE(file date)
FILEDATELONG(file date long format) FILETIME(time)
RECFM(record format) RECLEN(record length) RECDLM(c|e|l|n|u)
DESCRIPTION(description)  UNIQUEID(unique ID) CODEPAGE(code page)
SYSTYPE(01|10|11|12|14|15|16|17|20|21|30|31|40|44|80|90)
SYSVER(system version) TRANSLATE(translate table)
COMSW(compression software name) COMVER(compression software version)
COMFILE(name of compressed file) DCMPRC(decompression return code);

Parameters
alias

Indicates the table type and table name of an alias table. This parameter contains 1 to 4 
alphanumeric characters.

aliasname
Indicates an alias name defined in the alias table. This parameter contains 1 to 16 alphanu-
meric characters.

sysid
Indicates the system ID of the user who sent the file. This parameter contains 1 to 3 alphanu-
meric characters.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table 
name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.
251



Expedite Base for Windows Programming Guide

RECEIVED record
account
Indicates the account of the user who sent the file. This parameter contains 1 to 8 alphanu-
meric characters.

userid
Indicates the user ID of the sender. This parameter contains 1 to 8 alphanumeric characters.

receiver
Indicates the receiver ID specified in the EDI data. This parameter contains 1 to 35 
characters.

recvqual
Indicates the EDI qualifier for the receiver specified in the EDI data. This parameter 
contains 1 to 4 characters.

sender
Indicates the sender ID specified in the EDI data. This parameter contains 1 to 35 characters.

sendqual
Indicates the EDI qualifier for the sender specified in the EDI data. This parameter contains 
1 to 4 characters.

controlnum
Indicates the Interchange Control Number from the X12 or UCS data. For UN/TDI data, this 
is the SNRF element. For EDIFACT data, this is the element 0020 (Interchange Control 
Reference). This parameter contains 1 to 14 characters.

class
Indicates the user class of the data specified by the sender to identify the data. This 
parameter contains 1 to 8 alphanumeric characters.

mode
Indicates the network data class field for this data as specified by the sender. Expedite Base 
for Windows omits this parameter for normal mode files. 

priority
Indicates the class of delivery service for this file. If this is a normal priority file, Expedite 
Base for Windows does not write this parameter.

charge
Indicates how the file charges are paid.

t Indicates a test-mode file.

a Indicates a normal-priority file that was copied from archive.

i Indicates express delivery to those users who have the continuous receive 
capability. This file was received before any other files with a lower priority. 
(Expedite Base for Windows does not support the continuous receive capability.)

p Indicates high priority.

1 Receiver pays all charges.

5 Sender and receiver split the charges.

6 Sender pays all charges.
252



Chapter 10. Using Expedite Base for Windows message response records

RECEIVED record
ack
Indicates that the sender asked Information Exchange to send a delivery acknowledgment.

length
Indicates the length of the file received. This parameter contains 1 to 9 numeric characters.

fileid
Indicates the name of the file in which Expedite Base for Windows placed the received data. 
This parameter contains 1 to 128 alphanumeric characters.

msgdate
Indicates the date the received data was placed into Information Exchange. The format of 
this parameter is yymmdd. This parameter contains 6 numeric characters.

msgdatelong
Indicates the date the received data was placed into Information Exchange. The format of 
this parameter is yyyymmdd. This parameter contains 8 numeric characters.

msgtime
Indicates the time received data was placed into Information Exchange. The format of this 
parameter is hhmmss. This parameter contains 6 numeric characters.

msgseqo
Indicates the unique number assigned to the data by Information Exchange. This parameter 
contains 1 to 6 numeric characters.

msgname
Indicates the name for the data specified by the sender. This parameter contains 1 to 8 alpha-
numeric characters.

msgneqno
Indicates the sequence number assigned by the sender as a file control number for this data. 
This parameter contains 1 to 5 alphanumeric characters.

sessionkey
Indicates the session access key that Expedite Base for Windows used when the file was 
received. This value is the ARCHIVEID for the file if you did not specify an ARCHIVEID 
parameter in the RECEIVE or RECEIVEEDI command. This parameter contains 1 to 8 alphanu-
meric characters.

delimited
Indicates the way Expedite Base for Windows actually processed record delimiters when the 
file was received.

d Indicates that Information Exchange returned a delivery acknowledgment to the 
sender.

l Expedite Base for Windows added CLRF at the end of the records according to the 
2-byte length delimiters at the beginning of each record.

e Expedite Base for Windows processed the EDI delimiters according to the param-
eters you specified on the RECEIVE or RECEIVEEDI command for EDI data.

n Expedite Base for Windows stored the data as it was received; if you specified the 
FORMAT option on the RECEIVE command then Expedite Base for Windows 
formatted the data according to that option.
253



Expedite Base for Windows Programming Guide

RECEIVED record
sysname
Indicates the name of the system that sent the data. This parameter contains 1 to 8 alphanu-
meric characters.

syslevel
Indicates the level of the system that sent the data. This parameter contains 1 to 8 alphanu-
meric characters.

startdate
Indicates the starting date of a time range for the files you received from Information 
Exchange. The format is yymmdd. This parameter contains 6 numeric characters.

starttime
Indicates the starting time of a range for the files you received from Information Exchange. 
The format is hhmmss. This parameter contains 6 numeric characters.

enddate
Indicates the ending date of a time range for the files you received from Information 
Exchange. The format is yymmdd. This parameter contains 6 numeric characters.

endtime
Indicates the ending time of a range for files you received from Information Exchange. The 
format is hhmmss. This parameter contains 6 numeric characters.

timezone
Indicates the time zone reference for the STARTTIME and ENDTIME parameters.

This parameter contains 1 to 5 alphanumeric characters.

datatype
Indicates whether the data is text or binary.

editype
Indicates the type of EDI data received: X12, UCS, UN/TDI, EDIFACT, or unformatted. 
This parameter contains 3 to 11 alphanumeric characters. 

senderfile
Indicates the original file name of the file on the sender’s system. This parameter contains
1 to 128 alphanumeric characters.

senderloc
If the sending system was a workstation, then this contains the directory where the file was 
stored on the sender’s system. This parameter contains 1 to 65 alphanumeric characters.

filedate
Indicates the date that the file was created or last edited on the sender’s system. The format 
is yymmdd. This parameter contains 6 numeric characters.

l Local time, as specified on the TIMEZONE parameter of the IDENTIFY 
command.

g Greenwich mean time (GMT).

a Text

b Binary
254



Chapter 10. Using Expedite Base for Windows message response records

RECEIVED record
filedatelong
Indicates the date that the file was created or last edited on the sender’s system. The format 
is yyyymmdd. This parameter contains 8 numeric characters.

filetime
Indicates the time that the file was created or last edited on the sender’s system. The format 
is hhmmss. This parameter contains 6 numeric characters.

recfm
Indicates the record format of the file on the sender’s system. If the record format is not used 
by the sending machine (for example, if the sending machine is a workstation), the value is 
????. This parameter contains 1 to 4 alphanumeric characters.

reclen
Indicates the original record length of the file. This parameter contains 1 to 5 numeric 
characters.

recdlm
Indicates the method used to delimit the records.

description
Provides a free-format description of the data written by the sender. This parameter contains 
1 to 79 alphanumeric characters.

uniqueid
Indicates the random ID assigned to the data by the sending interface. It helps you identify 
the data. This parameter contains 8 alphanumeric characters.

codepage
Indicates the code page used by the sending system to determine the character representation 
of a given byte. This parameter contains 3 numeric characters.

systype
Indicates the type of system that sent the data. This parameter contains 2 hexadecimal digits. 
See the Information Exchange Administration Services User’s Guide for relevant system 
type codes.

sysver
Indicates the software version of the Expedite system sending the data. This parameter 
contains 1 to 3 numeric characters.

translate
Indicates the ASCII-to-EBCDIC translate table used when this file was sent to Information 
Exchange. This parameter contains 8 alphanumeric characters.

c CRLF characters delimit the records.

e EDI characters delimit the records.

l A 2-byte length preceding each record delimits the records.

n The records contain no delimiters, or the sender did not indicate the type of delim-
iters on the CDH.

u Unknown delimiters.
255



Expedite Base for Windows Programming Guide

RECEIVED record
comsw
Indicates the name of the compression software package used to compress the file. This 
parameter contains 10 alphanumeric characters.

comver
Indicates the version of the compression software package used to compress the file. This 
parameter contains 1 to 5 alphanumeric characters.

comfile
Indicates the name of the compressed file. This parameter contains 1 to 54 alphanumeric 
characters.

dcmprc
Indicates the decompression return code. This parameter contains 1 to 5 alphanumeric 
characters.
256



Chapter 10. Using Expedite Base for Windows message response records

RETURN record
RETURN record 
The RETURN record indicates the completion of a command. A zero value indicates that the 
command completed normally.

Format
RETURN(return code) ERRDESC(error description)
ERRTEXT(error text) SESSIONKEY(session key);

Parameters
return

Indicates completion of the Expedite Base for Windows command. If the return code is zero, 
the command completed successfully. If the return code is not zero, Expedite Base for 
Windows displays an error number along with ERRDESC and ERRTEXT records. This 
parameter contains 5 numeric characters.

errdesc
Provides a short description of an error. If the return code is zero, this parameter is not 
contained in baseout.msg. This parameter contains 1 to 76 alphanumeric characters.

errtext
Provides a detailed description of an error and may suggest steps to correct the problem. 
There may be multiple error text records. Each ERRTEXT record contains 1 to 76 alphanu-
meric characters.

sessionkey
Contains the session access key provided by Information Exchange upon a successful 
session start. The session access key is only provided after a START command. When the 
RETURN record contains a session access key, this is the only parameter included in the 
record. This parameter contains 1 to 8 alphanumeric characters.
257



Expedite Base for Windows Programming Guide

SENT record
SENT record 
The SENT record returns information about the sent data that may not be apparent from the 
command parameters. Expedite Base for Windows creates one SENT record for each file or EDI 
envelope it sends. All the parameters shown here may not be included in the SENT record because 
Expedite Base for Windows does not write parameters with blank values.

When the SENT record follows a SEND command, it includes only the UNIQUEID and the LENGTH 
parameters. When it follows a SENDEDI command, the SENT record returns all the parameters 
shown, unless the parameter value is blank.

Format
SENT

ALIAS(alias) ALIASNAME(alias name)
or
SYSID(system ID) ACCOUNT(account) USERID(user ID)
or
ACCOUNT(account)  USERID(user ID)
or
LISTNAME(list name)

UNIQUEID(unique ID) LENGTH(length)
EDITYPE(data type) DESTINATION(destination) QUALIFIER(qualifier)
CONTROLNUM(control number) CLASS(class) MSGNAME(message name)
MSGSEQNO(message sequence number);

Parameters
alias

Indicates the alias table type and table name of the Information Exchange destination. This 
parameter contains 1 to 4 characters.

aliasname
Indicates an alias name defined in the alias table. This parameter contains 1 to 16 alphanu-
meric characters.

sysid
Indicates the system ID of the user to whom you sent data. This parameter contains 1 to 3 
alphanumeric characters.

account
Indicates the account of the user to whom you sent data. This parameter contains 1 to 8 
alphanumeric characters.

userid
Indicates the user ID of the user to whom you sent data. This parameter contains 1 to 8 
alphanumeric characters.

gxxx Global alias table, where xxx identifies a 1- to 3-character table name.

oxxx Organizational alias table, where xxx identifies a 1- to 3-character table name.

pxxx Private alias table, where xxx identifies a 1- to 3-character table name.
258



Chapter 10. Using Expedite Base for Windows message response records

SENT record
listname
Indicates the name of a list of account and user IDs to whom you sent data. This parameter 
contains 1 to 8 alphanumeric characters.

uniqueid
Indicates the random ID assigned to the file by Expedite Base for Windows. It helps you 
identify the file and can be used to associate the sent file with any acknowledgments you 
may receive. The first 8 characters of the MSGDESCR field in the Information Exchange 
acknowledgment contain the UNIQUEID. This parameter contains 8 alphanumeric characters.

length
Indicates the length of the file or EDI envelope. This parameter contains 1 to 9 numeric 
characters.

editype
Indicates the type of EDI data sent:  X12, UCS, UN/TDI, or EDIFACT. This parameter 
contains 1 to 7 alphanumeric characters.

destination
Indicates the destination specified in the EDI data. This parameter contains 1 to 35 alphanu-
meric characters.

qualifier
Indicates the EDI qualifier for the destination. This parameter contains 1 to 4 alphanumeric 
characters.

controlnum
Indicates the interchange control number from the X12 or UCS data. For UN/TDI data, this 
is the SNRF element. For EDIFACT data, it is the data element 0020 (Interchange Control 
Reference). This parameter contains 1 to 14 alphanumeric characters.

class
Indicates the user class specified in the SEND or SENDEDI command. If you used the SENDEDI 
command without this parameter, Expedite Base for Windows uses the default user class of 
the EDI data type for this parameter value. This parameter contains 1 to 8 alphanumeric 
characters.

msgname
Indicates the message name specified in the SEND or SENDEDI command. If you used the 
SENDEDI command without this parameter, Expedite Base for Windows uses the message 
name obtained from the EDI data type for this parameter value. This parameter contains 1 to 
8 alphanumeric characters.

msgseqno
Indicates the message sequence number obtained from the MSGSEQNO parameter or assigned 
by Expedite Base for Windows. This parameter contains 1 to 5 alphanumeric characters.
259



Expedite Base for Windows Programming Guide

SESSIONEND record
SESSIONEND record 
The SESSIONEND record is the last record in the response file. The SESSIONEND record indicates 
the completion of an entire basein.msg file. A zero value indicates that all the commands in the 
file completed successfully.

Format
SESSIONEND(session end) ERRDESC(error description)

ERRTEXT(error text) ; 

Parameters
sessionend

Indicates the return code for the entire message command file (basein.msg). A return code of 
00000 indicates that processing of basein.msg completed successfully. If you receive a 
return code other than 00000, correct the error and restart Expedite Base for Windows. This 
parameter contains a 5-digit code.

errdesc
Provides a short description of an error. If the return code is zero, Expedite Base for 
Windows does not include this parameter. This parameter contains 1 to 76 alphanumeric 
characters.

errtext
Provides a detailed description of an error and may suggest steps to correct the problem. 
There may be multiple error text records. Each ERRTEXT record contains 1 to 76 alphanu-
meric characters.

NOTE: There is only one SESSIONEND record in a response file, even 
if there are multiple START and END commands.
260



Chapter 10. Using Expedite Base for Windows message response records

STARTED record
STARTED record 
The STARTED record provides information about the previous session. This record is written to 
the output file as a result of a START or AUTOSTART command.

Format
STARTED  LASTSESS(0|1) RESPCODE(code)
SESSIONKEY(sesskey) IEVERSION(version)
IERELEASE(release);

Parameters
lastsess

Indicates the status of the previous session.

respcode
Indicates the Information Exchange response code for the current session (not the previous 
session). If RESPCODE is not 0 or 2, you will get a SESSIONEND return code from Expedite 
Base for Windows indicating the problem. RESPCODE is 5 digits, padded on the left with 
zeros.

sessionkey
Indicates the unique identifier for this Information Exchange session. This is also used as the 
archive ID for files that are archived and for which you did not specify ARCHIVEID on the 
RECEIVE command. SESSIONKEY is 8 alphanumeric characters.

ieversion
Indicates the version of Information Exchange. Levels of Information Exchange are tracked 
as V.R where V is the version, a major enhancement in the service, and where R is the release, 
a minor enhancement. IEVERSION is two digits, padded on the left with zeros.

ierelease
Indicates the release of Information Exchange. Levels of Information Exchange are tracked 
as V.R where V is the version, a major enhancement in the service, and where R is the release, 
a minor enhancement. IERELEASE is two digits, padded on the left with zeros.

0 Indicates the last session was successful.

1 Indicates the last session was not successful.
261



Expedite Base for Windows Programming Guide

WARNING record
WARNING record 
The WARNING record indicates a minor problem during the completion of a command.

Format
WARNING(warning) ERRDESC(error description);

Parameters
warning

Indicates the warning number. This parameter contains 5 numeric characters.

errdesc
Provides a short description of an error. This parameter contains 1 to 76 alphanumeric 
characters.
262



© Copyright GXS, Inc. 1998, 2005
Chapter 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using additional features 

You can use Expedite Base for Windows to retrieve audit data, query your mailbox, request 
acknowledgments, and work with libraries. You can also use it to archive files and validate 
addresses, payment levels, and authorizations. This chapter describes how to use these features 
and discusses how you can use command line parameters to implement some of the Expedite 
Base for Windows functions.

Compressing and decompressing data 
If you have the appropriate compression and decompression software installed, you can request 
Expedite Base for Windows to compress data you are sending and receiving. Expedite Base for 
Windows provides a COMPRESS parameter on the SEND and SENDEDI commands to request 
compression. Fields in the RECEIVED record and in the CDH provide information on the decom-
pressed data you receive. For more information, see Appendix E, “Using data compression.’’

Using audit trails 
Information Exchange provides an audit trail that you can retrieve using Expedite Base for 
Windows or view using Information Exchange Administration Services. For information on 
viewing audit data, see the Information Exchange Administration Services User’s Guide. Audit 
trails are files that contain information about files you send and receive. Audit trails can include 
the following information:

■ Name of the file sent or received
■ Account and user ID of the person who received the file
■ Account and user ID of the person who sent the file
■ Date and time the file was sent or received
■ User class of the file
■ Current status of the file (for example, delivery date and time)

You can request level 1, level 2, or level 3 audit trails. Level 1 audit trails contain basic infor-
mation about your files. Level 2 audit trails contain more detailed information about your files. 
Level 3 audit trails contain more detailed information, with an EDI control number.
263



Expedite Base for Windows Programming Guide

Using audit trails
If you specify an audit level that is not supported, then Information Exchange uses the default, 
level 1, and puts a level 1 audit in your mailbox in response to your request.

You can use the information in audit trails to see the status or final disposition of a file. For 
example, if you send an order electronically to a manufacturer on July 1 and do not receive the 
items as expected, you can request an audit trail of the files you sent to that manufacturer on July 
1. The audit trail may show that the manufacturer never received the order and it is still in their 
mailbox. If the audit trail shows that they received the order, you may want to check with the 
manufacturer to find out if the order was ever filled.

You can also use audit trails to see how many files you sent or received over a specific time 
period. For example, you can request an audit trail that shows all of the files you sent over the last 
three weeks.

Retrieving audit trails 
Use the AUDIT command to retrieve an audit trail from Information Exchange and place the infor-
mation in your mailbox. When audit data is available, use the RECEIVE command to retrieve it. 
The source account the file comes from is *SYSTEM*, the user ID is *AUDITS*, and the user 
class is #SAUDIT. Information Exchange does not prepare a common data header (CDH) to 
accompany retrieved audit records.

Audits are not available immediately; you cannot successfully issue the RECEIVE command after 
the AUDIT command to receive the audit data. Audits are normally available during the next 
session. For more information on the AUDIT and RECEIVE commands, see “AUDIT command 
example” on page 181 and “RECEIVE command example” on page 207.

The following steps show how you request and receive audit trails and what an audit trail looks 
like.

Step 1
The following example shows the basein.msg file you would use to create an audit file with 
information about all files received between July 1 and July 5 with a user class of orders.

AUDIT STARTDATE(20040701) ENDDATE(20040705) CLASS(ORDERS);

The output file, baseout.msg, indicates a RETURN(00000) if the audit command was processed 
properly. The result would be a file placed in your mailbox with account *SYSTEM* and user ID 
*AUDITS*, with user class #SAUDIT.

Step 2
The next step is to receive the audit file from your mailbox. The following example shows two 
commands that you can use in basein.msg to receive the audit files.

RECEIVE FILEID(AUDITS.FIL) CLASS(#SAUDIT);
RECEIVE FILEID(AUDITS.FIL) ACCOUNT(*SYSTEM*) USERID(*AUDITS*);

If there was an audit file in your Information Exchange mailbox, the output file baseout.msg 
would have a RECEIVED record indicating the audit file was received.
264



Chapter 11. Using additional features

Message audit record formats
Step 3
The following example shows the audit trail as it would appear in the file called audits.fil. 

ACCT    SENDER  1    ACCT      USERA   A69438B70554CAE3F51RECEIVED
SORDERS                     EBWIN   410 0000000200053473                    
990702123630   0000000
990702143701930702123703930702123704

Message audit record formats 
Information Exchange provides three levels of audit record data. The length of the level 1 
message audit record is 254 bytes. The length of the level 2 message audit record is 326 bytes. 
The length of the level 3 message audit record is 340 bytes. All fields are in character format. 
Refer to Information Exchange Administration Services Messages and Codes for more infor-
mation on audit record format and messages.

Querying a mailbox 
Use the QUERY command to see a list of all the files in your Information Exchange mailbox. 
Expedite Base for Windows places AVAILABLE records in the response file in response to the 
QUERY command. It writes an AVAILABLE record for each file in your mailbox.

The information obtained in response to the QUERY command can be very useful for several 
reasons. The AVAILABLE records show all the files waiting to be received from your mailbox. 
Using this information, you can build RECEIVE or RECEIVEEDI commands to receive all of these 
files. In addition, the AVAILABLE records provide a MSGKEY for each of the files in the mailbox. 
You can use this information on a RECEIVE or RECEIVEEDI command to receive a specific file.

Example
This example shows how to use the QUERY command to make sure that you receive all files in 
your mailbox.

Company A receives e-mail messages and software updates from its trading partner. Both 
companies agree that the e-mail will have a user class of FFMSG001 (this is the default for e-
mail) and the software updates will have a user class of UPDATE. Company A builds an input file 
(basein.msg) with one RECEIVE command to receive all files with class FFMSG001 into a file 
called email.fil. The second RECEIVE command receives all files with class UPDATE into file 
software.fil.

On one occasion, the trading partner mistakenly sent Company A a software update with the user 
class UPDATES instead of UPDATE. Because Company A receives with user class UPDATE, it will 
not receive the file with user class UPDATES, and may never know that the file is in its mailbox. If 
Comapny A issues a QUERY command in each session, it will see the file with class UPDATES and 
know to receive it. 

NOTE: When you receive files from your mailbox, the data is stored 
as a single record. The record length is 254 bytes for a level 1 audit 
trail, and 326 bytes for a level 2. For this example, the audit record has 
been split in order to display it on this page. For more information on 
audit record formats, see the following section.
265



Expedite Base for Windows Programming Guide

Querying a mailbox
The following examples show how to add the QUERY command to a basein.msg and the resulting 
baseout.msg. 

■ The following is an example of the basein.msg message command file:

RECEIVE FILEID(EMAIL.FIL) CLASS(FFMSG001);
RECEIVE FILEID(SOFTWARE.FIL) CLASS(UPDATE);
QUERY CDH(N);

■ The following is an example of the baseout.msg message response file:

AUTOSTART SESSIONKEY(GKJ5873H);
STARTED LASTSESS(0) RESPCODE(00000) SESSIONKEY(GKJ5873H)
IEVERSION(04) IERELEASE(06);
RETURN(00000);

RECEIVE FILEID(EMAIL.FIL) CLASS(FFMSG001);
RECEIVED ACCOUNT(ACCT) USERID(PARTNER) CLASS(FFMSG001) CHARGE(5)
LENGTH(3056) FILEID(EMAIL.FIL) MSGDATE(040701) MSGDATELONG(20040701)
MSGTIME(113314) MSGSEQO(001950) SESSIONKEY(GKJ5873H) DELIMITED(N)
SYSNAME(EB/WIN) SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A)
EDITYPE(UNFORMATTED) SENDERFILE(MAIL.A) SENDERLOC(EXPBASE)
FILEDATE(040630) FILEDATELONG(20040630) FILETIME(160340)
RECFM(????) RECLEN(00000) RECDLM(C) UNIQUEID(74662366)
SYSTYPE(15) SYSVER(1) TRANSLATE(IESTDTBL);
RETURN(00000);

RECEIVE FILEID(SOFTWARE.FIL) CLASS(UPDATE);
RECEIVED ACCOUNT(ACCT) USERID(PARTNER) CLASS(UPDATE) CHARGE(5)
LENGTH(2861) FILEID(SOFTWARE.FIL) MSGDATE(040701)
MSGDATELONG(20040701) MSGTIME(113314) MSGSEQO(001950)
SESSIONKEY(GKJ5873H) DELIMITED(N) SYSNAME(EB/WIN)
SYSLEVEL(0450) TIMEZONE(L) DATATYPE(A) EDITYPE(UNFORMATTED)
SENDERFILE(CODE.A) SENDERLOC(EXPBASE) FILEDATE(040630)
FILEDATELONG(20040630) FILETIME(160340) RECFM(????) RECLEN(00000)
RECDLM(C) UNIQUEID(47892366) SYSTYPE(15) SYSVER(1)
TRANSLATE(IESTDTBL);
RETURN(00000);

QUERY CDH(N);
AVAILABLE ACCOUNT(ACCT) USERID(PARTNER)

                 MSGKEY(12345678901234567890)
CLASS(UPDATES) MSGDATE(930702) MSGTIME(081522) LENGTH(5000)
SYSTYPE(15) SYSVER(1);
RETURN(00000);

AUTOEND;
RETURN(00000);
SESSIONEND(00000);

This response to the QUERY command in this output file shows that there is one file available in 
the mailbox. The file is from account acct and user ID partner. It has a user class of updates and 
a message key of 12345678901234567890. Based on this information, the user at Company A 
can build an input file to receive this file using a number of methods, including:

■ The RECEIVE command can receive all files with a user class of updates

NOTE: The AVAILABLE record may have more information than is 
shown in this example.
266



Chapter 11. Using additional features

Using acknowledgments
■ The RECEIVE command can specify a message key of 12345678901234567890 to receive the 
file. This is useful if there are multiple files in the mailbox from the same account and user 
ID with the same user class, but you only want to receive one of them.

Using mailbox query with a panel-driven interface 
If you have written a panel interface to Expedite Base for Windows, you may decide to allow 
users to query the mailbox and then receive selected individual files.

Your program would have to read the AVAILABLE records and save the appropriate information, 
including the unique message key. This key is displayed in the MSGKEY parameter of the 
AVAILABLE response record. Your program might present a panel with a list of the files available 
in the user’s mailbox. The user could select individual files to receive. Based on these selections, 
your program could build RECEIVE or RECEIVEEDI commands in basein.msg that have the 
MSGKEY of the files they want to receive.

For more information on receiving specific files, see “Receiving specific files” on page 86.

Using acknowledgments 
You can request three types of Information Exchange acknowledgments using the ACK parameter 
on the SEND and SENDEDI commands:

To retrieve these acknowledgments from your mailbox, use the RECEIVE command and specify 
an account ID of *SYSTEM* and a user ID of *ERRMSG*.

For information on acknowledgment formats, see Information Exchange Messages and Formats.

receipt Information Exchange generates a receipt acknowledgment when a file reaches 
the receiver’s mailbox after a successful Expedite Base for Windows session.

delivery Information Exchange generates a delivery acknowledgment when a desti-
nation user receives a file from the Information Exchange mailbox.

purge Information Exchange generates a purge acknowledgment when a file is purged 
from the receiver’s mailbox.
267



Expedite Base for Windows Programming Guide

Working with libraries
Working with libraries 
A library is a facility of Information Exchange that allows data to be stored for an extended 
period of time. Unlike messages in a user’s mailbox, information in a library is not deleted 
automatically after a certain amount of time or after all receivers have picked up the information. 
Some uses for libraries are:

■ Product catalog information
■ Technical specifications
■ Problem descriptions
■ Programs
■ Newsletters
■ Requests for quotations

Data is stored in a library in units called library members. For example, a product catalog library 
can consist of a separate member for each product. Expedite Base for Windows allows users to 
add members to a library as well as retrieve members from a library and put them in an Infor-
mation Exchange mailbox.

To use libraries in Expedite Base for Windows:

1. Create a library using Information Exchange Administration Services. The characteristics of 
a library that are specified when the library is created include:

2. Use the GETMEMBER and PUTMEMBER commands as appropriate. For more information, see 
“GETMEMBER command” on page 193 and “PUTMEMBER command” on page 203.

3. Use the LISTLIBRARIES and LISTMEMBERS commands to identify libraries and members to 
which you have access. For more information, see “LISTLIBRARIES command” on page 
200 and “LISTMEMBERS command” on page 201.

For more detailed information about how to define and work with libraries, refer to the Infor-
mation Exchange Administration Services User’s Guide.

Library name The name of the library that is unique within the account.

Owning account ID The account ID of the library owner.

Owning user ID The user ID of the library owner.

Library description A description that helps identify the library within a list of 
libraries.

Searchable indicator Determines whether or not the library members are searchable.

Owner willing to pay Specifies whether or not the owner is willing to pay for others to 
retrieve members or view the text of the members from the library.

Read and write authority Specifies who has the authority to list the members of a library, 
view the text of library members, search, retrieve, add, and delete 
library members.
268



Chapter 11. Using additional features

Working with libraries
Adding and retrieving library members 
Expedite Base for Windows provides the GETMEMBER and PUTMEMBER commands that enable 
you to work with libraries. Use the GETMEMBER command to retrieve a library member from an 
existing Information Exchange library and put it in your mailbox. The member is available in 
your mailbox as soon as the GETMEMBER command completes. Use the PUTMEMBER command to 
add a library member to an existing Information Exchange library. The following examples show 
how to add members to and retrieve members from an Information Exchange library.

Example: Adding members to a library
Vendor A builds standard applications for distribution to many businesses. When Vendor A 
develops software upgrades, it makes these upgrades available to the businesses by putting the 
code into an Information Exchange library. This way, it only needs to provide one copy of the 
new code, instead of having to mail diskettes to all the businesses.

Vendor A adds the new file to the library using the PUTMEMBER command as follows:

PUTMEMBER LIBRARY(NEWCODE) MEMBER(CODEFIX) FILEID(XYZ123.EXE);

This command specifies that file xyz123.exe is to be added to library newcode. This library 
member will have the name codefix.

After the member is put into the library, it is available for anyone who has read access to the 
library.

Example: Retrieving members from a library
To get a copy of the member described in the previous example, you must use the GETMEMBER 
command shown in the following example.

GETMEMBER LIBRARY(NEWCODE) MEMBER(CODEFIX) CLASS(UPGRADE);

This command tells Information Exchange to copy member codefix from library newcode into 
this user’s mailbox. The file in the mailbox will have a user class of upgrade. After the file is in 
the mailbox, the user must issue a RECEIVE command to receive it from Information Exchange. 
The RECEIVE command might look as follows:

RECEIVE CLASS(UPGRADE) FILEID(XYZ123.EXE);

After you issue the RECEIVE command, the file is stored on the PC using the original file name of 
xyz123.exe.

Identifying libraries and library members  
Expedite Base for Windows provides the LISTLIBRARIES and LISTMEMBERS commands to allow 
you to identify libraries and members to which you have access.

Use the LISTLIBRARIES command to identify libraries to which you have access. Expedite Base 
for Windows returns this information in a LIBRARYLIST record.

Use the LISTMEMBERS command to identify library members to which you have access. Expedite 
Base for Windows returns this information in a MEMBERLIST record.
269



Expedite Base for Windows Programming Guide

Working with libraries
Example: Identifying library members
To obtain information about the member described in the previous example, use the following 
LISTMEMBERS command:

LISTMEMBERS LIBRARY(NEWCODE);

Expedite Base for Windows returns the descriptions (if they exist) in the DESCRIPTION parameter 
of a MEMBERLIST record.

Example: Identifying libraries
To identify libraries to which you have read access, use the following LISTLIBRARIES command:

LISTLIBRARIES AUTHORITY(R);

This command tells Information Exchange to determine which libraries you can read, and to 
return a description of each library. Expedite Base for Windows returns the descriptions (if they 
exist) in the DESCRIPTION parameter of a LIBRARYLIST record.

Using acknowledgments with libraries 
If you request an acknowledgment with the GETMEMBER command, three types of acknowledg-
ments are available:

If the library owner is paying for the receive charges for the member, the library owner receives 
the acknowledgment. Otherwise, the individual who issued the GETMEMBER request receives the 
acknowledgment.

If you request an acknowledgment with the PUTMEMBER command, two types of acknowledg-
ments are available:

The acknowledgment is always sent to the individual who issued the PUTMEMBER command. 

receipt Information Exchange creates a receipt acknowledgment when a member is 
placed in the receiver’s mailbox.

delivery Information Exchange creates a delivery acknowledgment when the member is 
successfully received from the receiver’s mailbox.

purge Information Exchange creates a purge acknowledgment when a member is 
deleted from the receiver’s mailbox.

delivery Information Exchange creates a delivery acknowledgment when the member is 
placed in the library.

receipt Information Exchange creates a receipt acknowledgment when it successfully 
receives the member from Expedite.

NOTE: The format of the acknowledgment when using libraries is the 
same as described in “Using acknowledgments” on page 267.
270



Chapter 11. Using additional features

Archiving and retrieving files
Understanding validations, payment levels, and authorizations with libraries  
As described previously in “Working with libraries,” either a library owner or an administrator 
working on the owner’s behalf creates a library using Information Exchange Administration 
Services. The person creating the library specifies the access authority level for each library user 
and specifies whether or not the library owner is willing to pay for others to retrieve members or 
view the text of members from the library. The following describes authority levels and charges 
for using Information Exchange libraries.

Understanding access authority levels 
Authority levels can be either read or write access for each user of an Information Exchange 
library. Users who have read authority can look at library and member information, view the text 
of library members, search library members, and retrieve library members. Users who have write 
authority can also add, replace, and delete library members. 

Understanding library charges 
There are four types of library charges you can incur charges for: 

■ Storing a library member

The library owner is charged a storage fee for the number of characters of data in library 
members.

■ Adding or replacing a library member

Each time you add or replace a library member you incur Information Exchange charges.

■ Viewing the text of a library member

Each time you use Information Exchange Administration Services to look at the text of a 
library member you incur Information Exchange charges.

■ Retrieving a library member

After you request that a library member be sent to your mailbox, an Information Exchange 
file containing the library member appears in your mailbox. When you receive the file from 
your mailbox, you incur Information Exchange charges.

Archiving and retrieving files
Information Exchange enables you to archive files when you receive them. This may be useful to 
you if you need a copy of a file in the near future. Information Exchange keeps a copy of your 
files for the number of days specified in your Information Exchange profile. Information 
Exchange does not keep the files in your Information Exchange mailbox. Refer to the Infor-
mation Exchange Administration Services User’s Guide for information about updating your 
Information Exchange profile to allow for archiving.

NOTE: Write access does not give a user authority to change library 
information or delete a library. Only the owner of a library, the owner’s 
Information Exchange service administrator, or an alternate 
administrator for the owner can change library information or delete a 
library.
271



Expedite Base for Windows Programming Guide

Archiving and retrieving files
Archiving all files 
To set up your Information Exchange profile so that Information Exchange archives every file 
you receive, use Information Exchange Administration Services to set FORCED ARCHIVE to y in 
your profile.

You can also specify the number of days that Information Exchange keeps the archived files. For 
example, if your profile indicates forced archiving for 10 days, then each time you receive a file 
from your mailbox, Information Exchange keeps a copy of that file for 10 days. During those 10 
days, you can have Information Exchange put a copy of the archived file into your mailbox and 
you can receive it again. See “Retrieving files from the archive” on page 273. After the 10 days 
have passed, Information Exchange deletes the archived file and you cannot receive it again. 

Archiving selected files 
Expedite Base for Windows and Information Exchange enable you to archive files on a file-by-
file basis. For example, you may find it unnecessary to archive every file you receive. You can 
set up your profile so that you decide whether or not to archive files when you receive them.

To archive selected files, use Information Exchange Administration Services to set FORCED 
ARCHIVE to n in your profile. Then specify how long you want Information Exchange to keep 
copies of the files you archive.

When you set FORCED ARCHIVE to n and specify a number greater than zero for the number of 
days to keep archived files, Information Exchange archives files only if you use the ARCHIVEID 
parameter on the RECEIVE or RECEIVEEDI commands. For example, if you want to receive two 
files from your Information Exchange mailbox and you want to archive the first file, but not the 
second, make sure that FORCED ARCHIVE is set to n in your Information Exchange profile and 
that the number of days to keep files is greater than zero. Use the ARCHIVEID parameter on the 
first RECEIVE command, and omit the parameter on the second RECEIVE command.

When you use ARCHIVEID, Information Exchange keeps copies of the files you received for the 
number of days specified in your profile. Information Exchange uses the value specified for the 
ARCHIVEID parameter as the archive identifier. It uses the identifier to find the files you want to 
retrieve from the archive. For additional information, refer to “RECEIVE command example” on 
page 207 and “RECEIVEEDI command example” on page 215. 

Example 1
To archive every file that you receive for a maximum of 10 days, use Information Exchange 
Administration Services to modify your Information Exchange profile as follows:

1. Set FORCED ARCHIVE to y.

2. Set NUMBER OF DAYS to 10.

NOTE: Information Exchange will not archive files you receive from 
your mailbox (even if you use ARCHIVEID) if the number of days for 
keeping archived files is set to zero in your Information Exchange 
profile.
272



Chapter 11. Using additional features

Archiving and retrieving files
Results
When you receive a file, a copy of the file will be kept in the Information Exchange archive for 
10 days. If you specify an ARCHIVEID parameter in the RECEIVE command, then that value will be 
used as the archive identifier when the file is copied to the archive. If you do not specify an 
ARCHIVEID parameter, Information Exchange will assign an archive identifier automatically. You 
can refer to the “RECEIVE command example” on page 207 to see what value was assigned.

Example 2
To selectively archive only certain files that you receive for a maximum of 15 days, do the 
following:

1. Use Information Exchange Administration Services to modify your Information Exchange 
profile as follows:

a. Set FORCED ARCHIVE to n.

b. Set NUMBER OF DAYS to 15.

2. Use the ARCHIVEID parameter on the RECEIVE command for the files that you wish to 
archive. For example:

RECEIVE FILEID(FILE1.FIL) ARCHIVEID(MYARCHID) CLASS(ARCHIVE);
RECEIVE FILEID(FILE2.FIL) CLASS(NOARCH);

Results
File file1.fil will be received and a copy of the file will be kept in the Information Exchange 
archive for 15 days. File file2.fil will be received but there will be no copy of the file maintained 
in the Information Exchange archive.

Retrieving files from the archive 
To retrieve a file from the Information Exchange archive, you must first copy the archived file 
from the archive to your Information Exchange mailbox. After the file copy is in your mailbox, 
you can use the RECEIVE or RECEIVEEDI command to receive the file.

There are two ways to copy a file from the archive to your mailbox:

1. Use Information Exchange Administration Services. To learn how to use Information 
Exchange Administration Services, refer to Using Information Exchange Administration 
Services.

2. Use the Expedite Base for Windows ARCHIVEMOVE command. See “ARCHIVEMOVE 
command example” on page 180 for information about the ARCHIVEMOVE command.

To use Expedite Base for Windows to copy an archived file, you specify the archive identifier for 
the file you want to copy to your mailbox by using the ARCHIVEID parameter on the 
ARCHIVEMOVE command. You can assign identifiers for files in one of two ways:

1. Use the ARCHIVEID parameter the first time you issue the RECEIVE or RECEIVEEDI command 
for the file.
273



Expedite Base for Windows Programming Guide

Archiving and retrieving files
2. Have Information Exchange assign identifiers automatically by setting FORCED ARCHIVE to 
y in your Information Exchange profile. In this case, Information Exchange assigns archive 
identifiers each time you issue RECEIVE and RECEIVEEDI commands without the ARCHIVEID 
parameter. The value assigned is shown in the SESSIONKEY parameter on the RECEIVED 
record in baseout.msg.

The ARCHIVEMOVE command tells Information Exchange to put a copy of the file with the 
specified archive identifier in your Information Exchange mailbox. For example, to place a copy 
of a file in the Information Exchange archive with the identifier of myarchid into your Infor-
mation Exchange mailbox, specify the following command in the message command file 
basein.msg:

ARCHIVEMOVE ARCHIVEID(MYARCHID);

When Information Exchange processes this command, it places the file in your mailbox. To 
receive the file from your mailbox, issue the RECEIVE or RECEIVEEDI command. You can receive 
the file immediately after you issue the ARCHIVEMOVE command in basein.pro.

The response record for the ARCHIVEMOVE command is the MOVED record. Expedite Base for 
Windows places this record in baseout.msg and includes the number of files that were copied 
from the Information Exchange archive to the mailbox. If there were no files in the archive 
matching your request, the response record will be:

MOVED NUMBER(0);
274



Chapter 11. Using additional features

Traveling User feature
Traveling User feature 
The Traveling User feature allows you to access Information Exchange when traveling abroad. A 
Traveling User connect script, tucnnct.scr, is provided with Expedite Base to support Traveling 
User for use with asynchronous communications. 

To use the Traveling User feature, you will need the following additional hardware:

■ A modem cable compatible with the phone jacks in the country you plan to visit

■ A voltage converter and plug adapter, if necessary

You will also need to make the following changes to Expedite Base:

1. Obtain the telephone number you will use at your destination, the baud rates supported by 
the telephone number, and your home ISO country code from your local Customer Care 
Help Desk.

2. Update the tucnnct.scr file with your home ISO country code. A comment in the file marks 
the proper location, which is near the end of the file.

3. Update the basein.pro file DIAL command:

• Change the telephone number specified by the PHONE parameter to the telephone 
number provided to you for your destination. Include the international access code, 
country code, and city code if provided.

• Verify that the telephone number you will use at your destination supports the data rate 
specified by the BAUDRATE parameter. If not, update the basein.pro file to change the 
date rate to a supported value.

• If you need to use an escape sequence to access an outside line (such as dialing a 9 
before the phone number in an office or hotel), add the ESCAPE parameter to the DIAL 
command. If you have an ESCAPE parameter and do not need it, change the value to 
blanks. Do not delete the ESCAPE parameter.

• Change the CNNCTSCR parameter to the tucnnct.scr (the Traveling User feature connect 
script that you will use at your destination).

4. Establish the connection by starting Expedite Base for Windows.

CAUTION: Before dialing from a new location, ensure that the telephone line is a 
proper asynchronous data line and not a digital PBX line, which could damage your 
modem.
275



Expedite Base for Windows Programming Guide

Understanding validations, payment levels, and authorizations with trading partners
Understanding validations, payment levels, and authorizations with 
trading partners  

When you communicate with trading partners, you can reduce the cost of transmitting data and 
ensure delivery of data by verifying the following:

■ The address you want to send a file to is a valid address.

■ You can use a particular payment level with the intended destination.

■ The intended destination has appropriate authorization levels to receive a file from your 
Information Exchange address.

If you are on the same system as the intended destination, you can use the VERIFY parameter on 
the SEND and SENDEDI commands to verify this information before you send a file. You can use 
the VERIFY parameter for distribution lists as well as for individual destinations. However, this 
parameter verifies only that the distribution list exists. It does not verify the existence of 
individual entries within the distribution list.

The following table shows which circumstances can result in a message charge:  

Using the VERIFY parameter, you can decide whether or not Expedite Base for Windows should 
send the data even if Information Exchange cannot verify the destination of a trading partner on 
another Information Exchange system.

If you are the sender, you can indicate how you want to pay file charges by using the CHARGE 
parameter on the SEND and SENDEDI commands. You can specify one of six payment options. For 
more information, see the Information Exchange Charges Reference.

For details on the VERIFY and CHARGE parameters, see “SEND command example” on page 222 
and “SENDEDI command example” on page 228.

If the destination system is: And the destination: Then a charge is:

On the same system Can be verified Not incurred

On the same system Is invalid Incurred

On a different Information 
Exchange system

Cannot be verified Not incurred
276



Chapter 11. Using additional features

Using command line parameters with the IEBASE command
Using command line parameters with the IEBASE command 
Expedite Base for Windows provides command line parameters for some functions that you 
cannot easily implement using message commands. To use command line parameters in the 
Windows 95, Windows 98, or Windows NT environment: 

1. Select Start.

2. Select Run.

3. Enter the command.

The command line parameters you can use with Expedite Base for Windows are:

■ AUTOMODE

It is possible for Expedite Base for Windows either to be in an idle state or to immediately 
start a communications session when it is loaded. The state is controlled by the AUTOMODE 
command.

Use one of the following methods to enable the AUTOMODE command:

• Method 1: Setting AUTOMODE in the WIN.INI file.

The format for the AUTOMODE command is

AutoMode=Y/N.

• Method 2: Submitting the AUTOMODE command line argument.

Add AUTOMODE following the IEBASE command in the Target field on the Expedite 
Base shortcut properties window.

The presence of this command line argument enables AUTOMODE regardless of what the 
AUTOMODE command is set to in the WIN.INI file.

■ CHECK or CHECK= or CHECK:

Using this parameter, you can verify that basein.pro and basein.msg are valid without 
running a session with Information Exchange. With the CHECK command line 
parameter, you can specify one of the optional parameters, 1 or 2, where:

Y Expedite Base for Windows is immediately started when it is loaded. The 
program is also automatically unloaded upon the completion of a session.

N Expedite Base for Windows remains in idle state when it is initially loaded. 
This is the default.

1 Indicates that the syntax of the commands in basein.pro and basein.msg is to 
be checked.

2 Indicates that the syntax of the commands in basein.pro and basein.msg is to 
be checked, and in addition the existence of any files specified in the SEND, 
SENDEDI and PUTMEMBER commands is to be checked. This is the default.
277



Expedite Base for Windows Programming Guide

Using command line parameters with the IEBASE command
For example:

iebase CHECK=1

causes Expedite Base for Windows to check the syntax of the commands in basein.pro 
and basein.msg, write the results in the SESSIONEND record in the baseout.msg file, and 
then exit without attempting to process any commands or connect to Information 
Exchange.

If the SESSIONEND record indicates a return code other than 00000, review the error 
message text and correct the problem. If you have specified checkpoint-level, file-level, 
or user-initiated data recovery, you will find more details about the error in 
tempout.msg. For more information you may also specify y for the IOFILE parameter on 
the TRACE command in basein.pro to cause Expedite Base for Windows to produce a 
trace of the syntax parsing in the iebase.trc trace file.

The internal profile, iebase.pro, will be modified during this check with the changes 
specified in basein.pro.

■ CHKPROFILE

Using this parameter, you can verify that basein.pro is valid. Expedite Base for Windows 
returns a code to baseout.pro and uses error level file 104 if there is a profile syntax error.

■ DELAY

This parameter performs any delay for delayed transmit and then terminates without estab-
lishing a connection.

■ PATH= or PATH:

With this parameter, you can specify a path. This path determines the directory for the 
profile command file, the profile response file, message command files, message response 
files, and session file. Expedite Base for Windows does not use this path for the files you 
send and receive or for the Expedite Base for Windows program files (such as display.scr or 
cnnct.scr). You can use up to 128 characters.

■ RESET

This parameter erases the information in the session file. It causes Expedite Base for 
Windows to reset the session with Information Exchange instead of restarting it at the last 
checkpoint. For information on session reset for text or binary files, see“Resetting a session” 
on page 68; for EDI data, see “Resetting a session” on page 121. For information on session 
restart for text or binary files, see “Restarting a session” on page 63; for EDI data, see 
“Resetting a session” on page 121.

If you load Expedite Base for Windows with the RESET command line argument and then 
have multiple start/stop sessions with that loaded version, each session will send a RESET 
command to Information Exchange.

If you want to have two sessions and only reset on the first, you must do the following:

a. Execute Expedite Base for Windows using RESET for the first session.

b. Unload Expedite Base for Windows.

c. Reload it again without using the RESET command line argument for the second session.
278



Chapter 11. Using additional features

Using command line parameters with the IEBASE command
■ STATUS

This parameter causes Expedite Base for Windows to set the error level file to indicate 
whether there is a restart situation. It checks only to see if a session file exists and returns the 
status immediately. An error level of zero indicates that there is no restart. Any other return 
code indicates that Expedite Base for Windows will attempt to restart the previous session. If 
you specify other command line parameters with the STATUS parameter, the other parameters 
will be ignored.

Submitting command line arguments
To submit a command line argument, complete one of the following:

1. Click the Windows Start button.

2. Click Run.

3. Enter the full path and name of the iebase executable followed by any command line 
paramters.

OR

1. Open Windows Explorer and go to the Windows\Start Menu\Programs folder.

2. Locate the folder where you installed the iebase shortcuts.

3. Open the folder.

4. Select the Expedite Base shortcut icon.

5. Select Properties from the File menu.

6. Click the Shortcut tab.

7. Type in the command line argument at the end of the Target field, which contains the full 
name and path for Expedite Base.

8. Select OK.

The command line information is saved and executed when Expedite Base for Windows is next 
loaded.
279



Expedite Base for Windows Programming Guide

Running Expedite Base for Windows in a separate directory
Running Expedite Base for Windows in a separate directory 
Expedite Base for Windows normally expects to locate the profile, input file, output files, and 
control files in the current directory. You may, however, decide to reserve the current directory 
for your own application program and run Expedite Base for Windows out of a separate 
directory. Or, you may decide to install Expedite Base for Windows to be used from different 
directories by different users. In these cases, you can execute Expedite Base for Windows from a 
directory other than the current directory by performing the following steps:

1. Use the PATH statement to point to a directory containing the Expedite Base for Windows 
executable files and batch files.

See “Reserved file names for PATH statement” on page 443 for a list of Expedite Base for 
Windows files affected by this statement.

2. Use the PATH= parameter on the IEBASE command to specify the directory containing the 
Expedite Base for Windows user files.

See “Reserved file names for PATH parameter” on page 444 for a list of Expedite Base for 
Windows files affected by this parameter.

3. Use the IEPATH parameter on the SESSION command in basein.pro to specify the directory 
containing the Expedite Base for Windows common support and configuration files.

See “Reserved file names for IEPATH parameter” on page 445 for a list of Expedite Base for 
Windows files affected by this parameter.
280



© Copyright GXS, Inc. 1998, 2005
Chapter 12
Communicating with users on different 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
operating systems

Before you send files between different operating systems, consider the following questions:

■ Is the receiving system the same type of system as the sending system? 
■ What is the record format of the file being sent?
■ Is a binary file being sent?

This chapter addresses each of these questions and the actions you take depending on the 
answers. It also discusses a valuable aid to file transfer, the common data header (CDH). 

Using the common data header 
The common data header (CDH) contains data that Expedite Base for Windows uses to commu-
nicate detailed information about files and messages to other interfaces and to Information 
Exchange. The CDH provides details that enable the receiving interface to reconstruct a received 
message or file into its proper format. Refer to Appendix B, “Common data header,’’ to learn 
more about the CDH format.

When you are exchanging information with users on other types of operating systems, there are 
specific fields in the CDH that may be of interest to you. These fields are: 

File name
Contains the name of the file as it is stored on the sender’s operating system.

The RECEIVE command can use this information to store the file on the receiving operating 
system using the same name. However, you cannot take advantage of this feature if the 
naming convention used on the sending operating system is different than the receiving 
operating system. 

NOTE: In this chapter, system refers to a particular type of operating 
system, rather than to a particular Information Exchange system.
281



Expedite Base for Windows Programming Guide

Communicating with interfaces that do not support the CDH
Location of file
Specifies the location of the file on the sender’s operating system.

The information stored in this field depends on the type of operating system sending the 
data.

As with the file name field, you cannot take advantage of this feature if the sending 
operating system and receiving operating system are different types.

Record format
Identifies the format of the data records.

If you are sending data to an Expedite Base/VM user, you can specify the record format that 
the receiver should use when receiving your data.

Record length
Identifies the length of the data records.

If you are sending data to an Expedite Base/VM user, you can specify the record length that 
the receiver should use when receiving your data.

Communicating with interfaces that do not support the CDH 
Expedite Base for Windows can communicate with interfaces that do not support the CDH. 
However, there are restrictions in some features that are dependent on the CDH. These restric-
tions include:

■ Versions of expEDIte/PC before Release 3 do not have an option to send binary data. All 
files sent by these releases are translated from ASCII to EBCDIC when sent to Information 
Exchange.

■ Versions of expEDIte/PC before Release 3 cannot use alternate translate tables when 
receiving files.

■ Expedite Base for Windows ignores the AUTOEDI and PROCESSLEN parameters on the 
RECEIVE command in files received from interfaces that do not support the CDH.

■ Some of the information in the RECEIVED record (for example, the DESCRIPTION parameter) 
is not available for files received from interfaces that do not support the CDH.

Sending files to an ASCII operating system 
You can send text files and binary files to an ASCII operating system. When you send a text file, 
Expedite Base for Windows translates the file from ASCII to EBCDIC as it sends the file to 
Information Exchange.

System type: Field contents:

MVS Device type and volume number

VM Minidisk label

AIX or UNIX Data path

PC Drive and directory
282



Chapter 12. Communicating with users on different operating systems

Receiving files from an ASCII operating system
When you send a binary file, you can use the DATATYPE parameter on the SEND command to 
indicate the file contains binary data. If you specify DATATYPE(B) indicating binary data, 
Expedite Base for Windows does not translate the file when it sends it. When you send a binary 
file without specifying DATATYPE, Expedite Base for Windows translates the file from ASCII to 
EBCDIC even though the file does not contain text characters. 

Receiving files from an ASCII operating system 
When you receive a file, Expedite Base for Windows checks the CDH to see if the file is 
EBCDIC or binary. If the file is EBCDIC, Expedite Base for Windows translates the file to 
ASCII as it receives it. If the translate table on your operating system matches the sender’s, the 
file should be a perfect match of the original file. When the tables do not match, the file is 
damaged. 

If the CDH indicates the file is binary, Expedite Base for Windows does not translate it because 
the sending operating system did not translate the original file. If the data type is unknown 
because there is no CDH, Expedite Base for Windows assumes the file is EBCDIC and translates 
it to ASCII. If the file is actually binary, the translation makes it unusable. If your trading partner 
sends you a binary file using an interface that doesn’t support the CDH, you can receive the file 
using the alternate translate table NOXLATE.XLT. The end result of this is that no translation is 
done when the file is received.

Sending files to an EBCDIC operating system 
You can send text files and binary files to an EBCDIC operating system. When you send a text 
file, you must change the record structure of the data to that of the receiving operating system. 
Use the DELIMITED parameter on the SEND command to specify what delimiter type, if any, 
Expedite Base for Windows puts in the data and in the CDH for the receiving operating system. 
Expedite Base for Windows translates text files to EBCDIC when it sends them.

When you send a binary file to an EBCDIC operating system, there are several things you must 
consider when deciding how to send the file. If the receiver is going to use the file in the same 
format as that on your operating system, then you can specify DATATYPE(B) to indicate that the 
file is binary and no translation should be done on either the send or receive side.

If the receiver receives the data using a host product, and then downloads the data to their PC 
using an emulator, the data translation depends on what method the emulator uses. If the 
emulator uses IBM Passport for Windows or IBM eNetwork Personal Communications for 
Windows 4.2 translation, then you may need to send the file using the DATATYPE(A) and 
TRANSLATE(IBM3270) parameters. This will result in an ASCII to EBCDIC translation using 
tables for the IBM eNetwork Personal Communications for Windows 4.2 program. When your 

NOTE: The CDH indicates the type of data a file contains. If the 
receiving operating system is an ASCII operating system and it does 
not recognize the CDH, the ASCII operating system translates binary 
files from EBCDIC to ASCII and makes them unusable. Therefore, do 
not specify DATATYPE when you send files to versions of expEDIte/PC 
before Release 3.

NOTE: To avoid problems with translation, use the Information 
Exchange default translate table.
283



Expedite Base for Windows Programming Guide

Receiving files from an EBCDIC operating system
trading partner downloads the file from the host to the PC, the translation will result in a PC file 
identical to the one you sent. If your trading partner’s emulator uses a different translation 
method, you may need to use an alternate translation table when sending the files.

In summary, you should consider how your trading partner receives and translates files in order 
to determine how to best send those files.

Receiving files from an EBCDIC operating system 
When you receive a file with a CDH from an EBCDIC operating system, Expedite Base for 
Windows uses the record delimiters in the CDH to reconstruct the record format. Expedite Base 
for Windows translates these files from EBCDIC to ASCII. However, there is not a perfect match 
between EBCDIC and ASCII characters. Most characters translate properly, but some EBCDIC 
characters may not look correct on an ASCII operating system. Before you begin exchanging 
production data with a trading partner on an EBCDIC operating system, be sure to run tests to 
verify that ASCII to EBCDIC translation works as expected.

“Example 1” on page 285 provides more information about how host operating systems store 
data and how you use the LRECL and RECFM parameters to send files to host operating systems.

Using alternate translate tables 
Previous sections of this chapter discussed how Expedite Base for Windows translates data from 
ASCII to EBCDIC when sending it to Information Exchange. When receiving data, Expedite 
Base for Windows translates from EBCDIC back to ASCII. To do this, Expedite Base for 
Windows uses a translate table which specifies ASCII characters and the EBCDIC characters that 
they are translated to (and vice versa). Appendix D, “Information Exchange translate table,’’, 
shows the standard translation table.

When you are exchanging data with a trading partner, it is important that the same translation 
tables are used on the sending and receiving sides so that the data received is identical to the data 
sent. If both you and your trading partner are using Expedite products in the workstation environ-
ments, there should be no problem. However there are certain scenarios which might require the 
use of an alternate translate table.

Expedite Base for Windows provides two alternate translate tables.

■ ibm3270.xlt

This is the translate table used by the IBM eNetwork Personal Communications for 
Windows 4.2 program. As an example, suppose your trading partner uses a host product to 
receive the data from Information Exchange, and then downloads the data to a PC using the 
IBM eNetwork Personal Communications for Windows 4.2 program. It might be best if you 
use the alternate translate table ibm3270.xlt when sending the data so that you and your 
trading partner are using the same translate tables.

■ noxlate.xlt

This is an alternate translate table. As the name implies, this table actually results in no 
translation of the data. This table is useful if you are receiving data that does not have a CDH 
with it, but you do not want the data translated. If there is no CDH, Expedite Base for 
Windows assumes it is EBCDIC text data and will use a translate table when receiving it. If 
you use the noxlate.xlt translate table, you will receive the data exactly as it was in your 
Information Exchange mailbox.
284



Chapter 12. Communicating with users on different operating systems

Examples of sending and receiving files on different operating systems
If neither the standard translate table, nor the alternate translate tables meet your needs, you can 
create your own. A sample C program called makexlt.c is provided with the Expedite Base for 
Windows product. Edit this file to change the translate characters and recompile it. Comments 
within makexlt.c provide directions to do this. If you create your own translate table, be sure to 
provide this table to your trading partners so that the translation on both the send and the receive 
sides is the same.

Examples of sending and receiving files on different operating 
systems 

This section provides examples for sending and receiving text and binary files to and from 
trading partners who use Expedite Base for Windows, expEDIte/PC, and host operating systems. 
The host operating systems your trading partners use may or may not support the common data 
header (CDH). The following includes examples for both cases.

Example 1
Host operating systems store data with a specified logical record length (LRECL) and record 
format (RECFM). Data on workstations is not stored the same way. Records on a workstation are 
generally delimited by carriage-return and line-feed (CRLF) characters. This difference 
sometimes causes problems when you send files using a workstation product and the receiver is 
on a host operating system.

The Expedite Base for Windows SEND command allows you to indicate how the data should be 
structured on a host operating system. The parameters that allow you to do this are the LRECL and 
RECFM parameters.

For example, company X uses Expedite Base for Windows to send files to Company Y. Company 
Y uses Expedite Base/VM to receive the data. The data is structured in 80-character records. On 
the company X workstation, this means the data is formatted with CRLF characters following 
each 80 characters of data. To ensure that the data is properly formatted when it is received by 
Expedite Base/VM use the LRECL and RECFM parameters as follows:

SEND FILEID(AAAA.FIL) ACCOUNT(ACCT) USERID(COMPANYY) LRECL(80) 
RECFM(F);

The receiver can properly format the data by using the record format and record length infor-
mation stored in the CDH. The receiver can receive the data using a fixed record format with 80-
character record length.

Example 2
The following example shows how you send text and binary files to trading partners who use the 
same release of Expedite Base for Windows. In this case, the trading partner’s operating system 
can use the CDH to see how you sent the file. Remember that text files are translated from ASCII 
to EBCDIC when you send them to Information Exchange. When your trading partner receives 
the files, they are translated back to ASCII.

If you send files as binary, they are not translated when you send them to Information Exchange. 
In this case, they are not translated when your trading partner receives them. If you do not send 
files as binary, then translation takes place on both ends and your trading partner still receives the 
files exactly as you sent them.
285



Expedite Base for Windows Programming Guide

Examples of sending and receiving files on different operating systems
In this example, it does not matter if you send the files as text or binary. Both of the following 
sets of commands will work.

Sample 1

SEND FILEID(TEXT.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(READABLE);
SEND FILEID(BINARY.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(BINARY);

Sample 2

SEND FILEID(TEXT.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(READABLE)
DATATYPE(B);
SEND FILEID(BINARY.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(BINARY)
DATATYPE(B);

Example 3
This example shows how you send text and binary files to trading partners who use an older 
version of expEDIte/PC that does not support the CDH. Since your trading partner’s operating 
system cannot read the CDH, it assumes that all files must be translated from EBCDIC to ASCII 
when they are received. For this reason, you should not use the DATATYPE(B) option when you 
send binary files to this trading partner. You should send all text and binary files to Information 
Exchange as ASCII so that they will be translated to EBCDIC. When your trading partner 
receives the files, they are translated back to ASCII. Your trading partner receives the files just as 
you sent them.

In this example, you should send both files as text.

SEND FILEID(TEXT.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(READABLE);
SEND FILEID(BINARY.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(BINARY);

Example 4
This example shows how you send files if your trading partner uses an Expedite product that 
supports the CDH on a host processor. In this case, your options are similar to those in Example 
2. The difference is that host processors store data in EBCDIC format instead of ASCII format.

When you send text files to Information Exchange, they are translated to EBCDIC format. When 
your trading partner receives the files from Information Exchange, no translation is necessary 
since the data is already in the EBCDIC format. However, a perfect match between ASCII and 
EBCDIC data does not always occur.

If your trading partner is having problems reading the data you sent, you may have to use an 
alternate translate table. Refer to “Using alternate translate tables” on page 284 for more infor-
mation.

When sending binary files to this user, you must consider how this user will receive and use the 
files in order to determine how to send them. Refer to “Sending files to an EBCDIC operating 
system” on page 283 for information about this. For this example, assume that the receiver is 
going to receive the file with expEDIte/MVS Host and will then download the file to a PC using 
the IBM eNetwork Personal Communications for Windows 4.2 program.
286



Chapter 12. Communicating with users on different operating systems

Examples of sending and receiving files on different operating systems
In this example, you should send the text file without the binary option so that it is translated 
from ASCII to EBCDIC and is readable on the host operating system. You should send the binary 
file using the alternate translate table equivalent to the IBM eNetwork Personal Communications 
for Windows 4.2 program. This way, the file on the receiver’s PC will be the same as the file on 
your PC.

SEND FILEID(TEXT.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(READABLE);
SEND FILEID(BINARY.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(BINARY)
TRANSLATE(IBM3270);

Example 5
This example shows how to send files to a trading partner who uses a host product that does not 
support the CDH. In this case, your options are somewhat limited. The host processors store data 
in EBCDIC format instead of ASCII. When you send a text file to Information Exchange, it is 
translated to EBCDIC format. When your trading partner receives the data from Information 
Exchange, no translation is necessary since the data is already in the EBCDIC format. However, 
a perfect match between ASCII and EBCDIC data does not always occur.

When sending binary files to this user, you must consider how this user will receive and use the 
files in order to determine how to send them. Refer to “Sending files to an EBCDIC operating 
system” on page 283 for more information.

In this example, you should send the text file without the binary option so that it is translated 
from ASCII to EBCDIC and is readable on the host operating system. You should send the binary 
file using the binary operating system option so that the file is not translated when it is sent to 
Information Exchange.

SEND FILEID(TEXT.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(READABLE);
SEND FILEID(BINARY.FIL) ACCOUNT(ABCD) USERID(USER01) CLASS(BINARY)
DATATYPE(B);

Example 6
This example shows how you receive text and binary files from a trading partner who is using the 
same release of Expedite Base for Windows. Since you both use Expedite Base for Windows, 
which supports the CDH, your operating system can use the CDH to see how your trading 
partner sent the files. When you issue the RECEIVE command, Expedite Base for Windows uses 
the CDH to determine whether the files need to be translated from EBCDIC to ASCII or just 
received without translation for binary files.

In this example, use the same RECEIVE command for both files. The text file will be properly 
translated from EBCDIC and the binary file will be received without translation.

RECEIVE FILEID(TEXT.FIL) CLASS(READABLE);
RECEIVE FILEID(BINARY.FIL) CLASS(BINARY);
287



Expedite Base for Windows Programming Guide

Examples of sending and receiving files on different operating systems
Example 7
This example shows how you receive text and binary files from a trading partner who uses an 
older version of expEDIte/PC that does not support the CDH. These versions of expEDIte/PC 
translate all files from ASCII to EBCDIC since there is no option to distinguish text files from 
binary files. In this case, Expedite Base for Windows will not be able to use the CDH to 
determine whether or not to translate a file. It will always assume EBCDIC and translate to 
ASCII when it receives the file. This should not be a problem because the data was translated on 
the sending side.

You can use the same RECEIVE command for both files.

RECEIVE FILEID(TEXT.FIL) CLASS(READABLE);
RECEIVE FILEID(BINARY.FIL) CLASS(BINARY);

Example 8
This example shows how you receive files from a trading partner who uses a host product that 
supports the CDH. Since a CDH is sent with the files, Expedite Base for Windows can use the 
CDH to see how your trading partner sent the files. When you issue the RECEIVE command, 
Expedite Base for Windows uses the CDH to determine whether the files need to be translated 
from EBCDIC to ASCII or just received without translation for binary files.

In this example, use the same receive command for both files. The text file will be properly trans-
lated from EBCDIC and the binary file will be received without translation.

RECEIVE FILEID(TEXT.FIL) CLASS(READABLE);
RECEIVE FILEID(BINARY.FIL) CLASS(BINARY);

If you are having problems using the data received from your trading partner, you may have to 
use an alternate translate table.

Example 9
This example shows how to receive files from a trading partner who uses a host product that does 
not support the CDH. Since no CDH is sent with the files, Expedite Base for Windows cannot 
determine if the original file was text or binary. In this case, Expedite Base for Windows always 
assumes EBCDIC and translates to ASCII when you receive the files. When receiving binary 
files from this user, you must consider where the files originated when determining how to 
receive them. Refer to “Sending files to an EBCDIC operating system” on page 283 for infor-
mation about this. For this example, assume that the binary file in Information Exchange is in the 
binary format that you require on the PC. In other words, you do not want any translation done 
while receiving the file. However, since there is no CDH with the file, Expedite Base for 
Windows assumes the file is in EBCDIC format and will attempt to translate the file to ASCII. 
You can get around this by using the NOXLATE.XLT translation table. The end result of this is 
that no translation is done when the file is received.

Following are the commands you can use to receive these files:

RECEIVE FILEID(TEXT.FIL) CLASS(READABLE);
RECEIVE FILEID(BINARY.FIL) CLASS(BINARY) TRANSLATE(NOXLATE);

If you are having problems using the data received from your trading partner, you may have to 
use an alternate translate table.
288



© Copyright GXS, Inc. 1998, 2005
Chapter 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Expedite Base for Windows main window

The main window for Expedite Base for Windows contains regions that display information 
about the connection, session, and files processed during the session. 

This chapter describes the regions of the main window.  It also discusses the display status script, 
describes the status events (commands) that you can use in the file, and shows how the window 
changes during a session for which you have requested a transmission delay.
289



Expedite Base for Windows Programming Guide

Main window example
Main window example
While using Expedite Base for Windows, a main window similar to the following displays on 
your computer monitor:

The regions of this window are as follows:

■ Title -  The name of the application, Expedite Base for Windows  Version 4.7. This name is 
retrieved from the TEXT field of the FIRST event in display.scr.

■ Icons - A graphic representation of the connection status of your session.  The icons respond 
to changes in connection and present the current direction of communication between Infor-
mation Exchange and Expedite Base for Windows.

laptop computer Represents the machine on which Expedite Base for Windows is 
running.

lightning bolt Indicates that an Information Exchange session is active between the 
two machines.

mainframe computer Represents Information Exchange.

arrows Indicate the direction of the information from the source to the 
receiver.
290



Chapter 13. The Expedite Base for Windows main window

Main window example
■ Connection Status - This region displays information about the connection to the network 
and Information Exchange. Events that update this region are: dialing, logging in, and 
disconnecting.

• Network section - Account and User ID correspond to the INACCOUNT and 
INUSERID parameters for the IDENTIFY command in basein.pro.

• Information Exchange section - Account and User ID correspond to the IEACCOUNT 
and IEUSERID parameters for the IDENTIFY command in basein.pro.

• Terminal ID - The terminal ID for the user’s computer when using asynchronous dial 
communication. This is used by support personnel to provide assistance to users.

• Help Desk - The telephone number of the Customer Care help desk displayed when 
using asynchronous dial communication.

• Phone # - Corresponds to the telephone number or numbers specified in the DIAL 
command in basein.pro.  The number currently being dialed is displayed when using 
asynchronous dial communication.

■ File Status - This region contains fields that display the progress of the session.

■ Status bar - This displays the transmission progress (0-100 %) of the file.  This field corre-
sponds to the Bytes Sent and Bytes Received fields.

■ Messages - This region displays text messages corresponding to events as specified in 
display.scr.  You can use the scroll bar to look at all the messages in the session if there are 
too many to fit in the current space.

Files Sent Files sent so far in this session.

Files Received Files received so far in this session.

Bytes Sent The number of bytes sent for the file currently being transmitted.

Bytes Received The number of bytes received for the file curently being transmitted.

Filename The name of the file being transmitted.

File Class The class of the file being transmitted.

File Size The size in bytes of the file currently being transmitted.
291



Expedite Base for Windows Programming Guide

Display for a session with a delay
Display for a session with a delay
If you specify a delaytime and/or delaydate parameter on the TRANSMIT command, the main 
window will display the following fields in the connection status area until it is time to make the 
connection:

■ Connect Date - Displays the value for the delaydate() parameter on the TRANSMIT 
command.

■ Date Now - Displays the current date.

■ Connect Time - Displays the value for the delaytime() parameter on the TRANSMIT 
command.

■ Time Now - Displays the current time.

A window similar to the following will be displayed:
292



Chapter 13. The Expedite Base for Windows main window

Using the display status script
The following fields display after a successful connection, replacing the previous fields:

■ Terminal ID - The terminal ID for the user’s computer displays when using asynchronous 
dial communication. This is used by support personnel to provide assistance to users.

■ Help Desk - The telephone number of the Customer Care Help Desk displays when using 
asynchronous dial communication.

■ Phone # - Corresponds to the telephone number or numbers specified in the DIAL command 
in basein.pro.  The number currently being dialed displays when using asynchronous dial 
communication.

If you do not specify a delay date, then the current date is displayed. If you do not specify a delay 
time, then 00:00:00 (midnight) is displayed.  For delay date and time, only one message appears 
in the scrolling area, but it is sent once every second to the controlling application, if there is one.

Using the display status script 
The commands in the display status script (display.scr) are called status events. The syntax of the 
events in the display status script is similar to the syntax of basein.pro; the only exception is that 
"commands" are referred to as "events" in the display status script. Refer to “Understanding 
command syntax” on page 32 for a detailed description of this syntax. You can type event and 
parameter names in either uppercase or lowercase.

The following table provides a list of status events you can use in the display status script file. 
The table also shows:

■ The point at which the events occur.

■ How often Expedite Base for Windows updates certain events.

■ Recommendations for usage.  

NOTE: Refer to the sample display script display.scr, which is 
included with Expedite Base for Windows, to see examples of any 
topics discussed in this chapter.

Status events: Actions displayed when:

ARCHIVEMOVE Expedite Base for Windows begins to process an ARCHIVEMOVE 
command.

AUDIT Expedite Base for Windows begins to process an AUDIT command.

CANCEL Expedite Base for Windows begins to process a CANCEL command.

CANWAITRCV Action displayed when time expires for a wait on a RECEIVE or 
RECEIVEEDI command.

CHARSRCVD Data is received from the network. It is updated approximately every 
3500 characters received while processing a RECEIVE or RECEIVEEDI 
command.

CHARSSNT Data is sent to the network. It is updated approximately every 3500 
characters for each PUTMEMBER, SEND, and SENDEDI command.

CONNECTED A successful connection has been made.
293



Expedite Base for Windows Programming Guide

Using the display status script
CONNECTING Expedite Base for Windows is attempting a non-async dial 
connection.

DELAYSESS You specify DELAYDATE and/or DELAYTIME on the SESSION 
command in the profile.

DEFINEALIAS Expedite Base for Windows begins to process a DEFINEALIAS 
command.

DIALCYCLE You specify CYCLE and WAIT on the DIAL command and Expedite 
Base for Windows cannot connect on the first cycle.

DIALING Expedite Base for Windows begins to process the connect (dial) 
script for an async dial session (not for manual dial or TCP/IP dial).

DISCONNECT Expedite Base for Windows begins to process the disconnect script 
in async dial communications.

END Expedite Base for Windows sends the session end command to 
Information Exchange.

EXIT You select Exit.

FILESRCVD A file is received.

FILESSNT A file is sent.

FIRST Expedite Base for Windows finishes reading the display script, and 
then the picture is displayed.

GETMEMBER Expedite Base for Windows begins to process a GETMEMBER 
command.

INLOGON The logon to the network was successful. If you specified 
NINPASSWORD in your profile to change your network password, the 
password was changed.

LAST The program ends.

LIST Expedite Base for Windows begins to process a LIST command.

LISTLIBRARIES Expedite Base for Windows begins to process a LISTLIBRARIES 
command.

LISTMEMBERS Expedite Base for Windows begins to process a LISTMEMBERS 
command.

LOSTCONNECT Expedite Base for Windows loses the connection with the network. 

MANUALDIAL Expedite Base for Windows expects you to dial the phone if you 
specified MANUALDIAL(Y) on the DIAL command.

PURGE Expedite Base for Windows begins to process a PURGE command.

PUTMEMBER Expedite Base for Windows begins to process a PUTMEMBER 
command.

QUERY Expedite Base for Windows begins to process a QUERY command.

RECEIVE Expedite Base for Windows begins to process a RECEIVE command.

Status events: Actions displayed when:
294



Chapter 13. The Expedite Base for Windows main window

Using the display status script
For each status event, you can print text to the message logging area of the Expedite Base for 
Windows main window.  If you do not specify an event in the display status script, then nothing 
is displayed when that event occurs.  You can print text for any event, and you can print as many 
text strings as you need by specifying the event multiple times in the display status script.  The 
order in which you specify the events does not matter; Expedite Base for Windows stores them at 
the beginning of the program and processes them when the event occurs.  Text strings are printed 
in the order you specified them on the event.  For example, to display two lines of text as the 
FIRST event, you could use the following lines in display.scr:

FIRST  TEXT(Expedite Base for Windows Version 4.7);
FIRST  TEXT(Date: 08/03/99);

In this example, the second line of text will be printed right after the first one in the message 
logging area.

Unused parameters for sessions
The PICTURE and STATUS parameters for the SESSION command in basein.pro no longer 
perform any function in regard to the display.  No matter what value they are given in basein.pro, 
the program will default to a Y value for display purposes.  

The value of STATUS, however,  does impact other programs. If STATUS is set to N in 
basein.pro and another program launched Expedite Base for Windows, then that program will not 
receive status information during a transmission. If STATUS is set to Y, then the program will 
receive status information.

RECEIVEEDI Expedite Base for Windows begins to process a RECEIVEEDI 
command.

RESTART The program begins and is restarting a previous session.

SEND Expedite Base for Windows begins to process a SEND command.

SENDEDI Expedite Base for Windows begins to process a SENDEDI command.

START Expedite Base for Windows sends the session start command to 
Information Exchange.

WAITRCV A RECEIVE or RECEIVEDI command is received that includes a wait 
value.

WELCOMEMSG Expedite Base for Windows receives the welcome message from the 
network.

Status events: Actions displayed when:
295



Expedite Base for Windows Programming Guide

Using the display status script
Displaying text 
The following is an example of the syntax you use to display text on the screen:

EVENT  TEXT(text)

where:

The following is an example of several events that display text:

# This text will be displayed when Expedite begins to process
#  the connect script.
DIALING  TEXT(Dialing the Network...);

# This text will be displayed when the network logon is successful.
INLOGON  TEXT(Successful Network logon);

# This text will be displayed when Expedite processes a QUERY 
command.

QUERY  TEXT(Checking the mailbox);

Using variables in your text 
You can use variables in TEXT parameters so that Expedite Base for Windows substitutes and 
displays the appropriate values. For example, you can display the number of bytes sent while 
Expedite Base for Windows is sending a file. Refer to the following table for this information.

Specify variable names with a % sign at the beginning and end, without spaces. For example, 
%TIMENOW% is correct, but %  TIMENOW  % is not. Variables can be in uppercase or lowercase 
characters; for example, %listname% is processed the same as %LISTNAME%.

Remember that if you specify text that is longer than 80 characters, Expedite Base for Windows 
truncates the text to fit in the window. Consider the fixed length of the value to be substituted for 
the variables you specify as part of the length of your text. Do not consider the length of the 
variable name itself. For example, if you specify 

DIALING  TEXT(Phone number: %PHONE%);

then since the length of the value for %PHONE% is 20, you have specified 34 characters to be 
displayed, 14 for “Phone number:” and 20 for the value of %PHONE%.

TEXT Is the text that will be displayed in the message logging area.

The TEXT value can be up to 255 characters long (including variables), and Expedite 
Base for Windows truncates the text, after substituting for variables, if the text is too 
wide to display in the window. The maximum number of displayed characters is 80; 
this is also the maximum text part of the message that is sent to the controlling appli-
cation.

All other parameters besides TEXT are still valid, but no longer serve any function. For 
example, a display script containing ROW, COLUMN, BACKGROUND, or 
FOREGROUND will still execute, but no action will be taken as a result of those 
parameters.
296



Chapter 13. The Expedite Base for Windows main window

Using the display status script
If you type a variable incorrectly, Expedite Base for Windows treats the variable as text and 
displays it on the screen. If you specify a variable that Expedite Base for Windows has not set 
yet, blanks appear in place of the variable on the screen. Expedite Base for Windows substitutes 
each variable with a fixed width on the screen. The following table lists the Expedite Base for 
Windows variables, their fixed widths, descriptions, and related events.

Variable Size of text 
substituted

Description Events that support 
this variable

ALIASTABLE 4 Name of the alias table from the 
DEFINEALIAS command.

DEFINEALIAS

ARCHIVEID 8 Archive ID from ARCHIVEMOVE 
command.

ARCHIVEMOVE

CANCELDEST 21 Mailbox from which you will 
cancel mail.

CANCEL

CHARSRCVDCNT 8 Characters received count. CHARSRCVD

CHARSSNTCNT 8 Characters sent count. CHARSSNT

CLASS 8 User class. SEND, SENDEDI, 
RECEIVE, RECEIVEEDI, 
PUTMEMBER

CNNCTYPE 5 Data rate on connection or from 
profile connection.

CONNECTED

DATE 8 The date for the delayed session. DELAYSESS

DELAYTIME 8 HH:MM:SS (time for delayed 
session).

DELAYSESS

DIALTIME 8 The time for the next dial attempt to 
occur when CYCLE and WAIT are 
specified in the profile.

DIALCYCLE

EXITKEY 1 The exit key specified (or 
defaulted) in the profile. (Default is 
3).

Any event

FILENAME 128 File ID from commands. SEND, SENDEDI, 
RECEIVE, RECEIVEEDI, 
PUTMEMBER

FILESIZE 6 Length of file to send. SEND, SENDEDI, 
PUTMEMBER

FILESRCVDCNT 5 Files received count. Expedite Base 
for Windows updates for RECEIVE 
and RECEIVEEDI each time a file is 
received. 

FILESRCVD

FILESSNTCNT 5 Files sent count. Expedite Base for 
Windows updates for PUTMEMBER, 
SEND, and SENDEDI each time a file 
is sent.

FILESSNT
297



Expedite Base for Windows Programming Guide

Using the display status script
Expedite Base for Windows display script 
The sample display script, display.scr, is provided with Expedite Base for Windows. You should 
try running Expedite Base for Windows with this script to see how it works before making any 
modifications.

HOTLINE 15 Customer Care Help Desk phone 
number from welcome message.

WELCOMEMSG

IEACCOUNT 8 Information Exchange account. START

IEUSERID 8 Information Exchange user ID. START

INACCOUNT 8 Network account. Any event

INUSERID 8 Network user ID. Any event

LIBRARY 8 Library name. PUTMEMBER, 
GETMEMBER, 
LISTMEMBERS

LISTNAME 8 List name from LIST command. LIST

MESSAGE 80 Message with final return code. LAST

MEMBER 8 Member name for PUTMEMBER, PUTMEMBER, 
GETMEMBER.

PHONE 20 Phone number dialed. DIALING

RETURNCODE  5 Final return code from Expedite 
Base for Windows.

LAST

SCRIPTNAME 128 Script name being processed (for 
dial communications).

DIALING, DISCON-
NECTING

TERMID 8 Terminal ID from welcome 
message.

WELCOMEMSG

TIMENOW 8 HH:MM:SS (time now, for delayed 
session).

DELAYSESS, DIALCYCLE

VERSION 5 V.R.M. - where V is version, R is 
release, M is modification.

Any event
298



© Copyright GXS, Inc. 1998, 2005
Chapter 14
Using the modem setup program and modem 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
scripts 

The first step in establishing asynchronous communication is to set up a modem. Expedite Base 
for Windows provides a modem setup program to assist you. This chapter describes the modem 
setup program and provides information about modem scripts and commands.

Running the modem setup program
The purpose of the modem setup program is to assist you in setting up your system to run with 
Expedite Base for Windows. The modem setup program enables you to configure a single 
modem to work with Expedite Base for Windows. Expedite Base for Windows contains the most 
common configuration as the default. 

As the modem setup program runs, it stores the values for the following DIAL command param-
eters in the expsetup.pro file:

If you need to modify an existing configuration, run the modem setup program. The program 
updates the expsetup.pro file automatically. The values stored in expsetup.pro override those 
specified in basein.pro. If you no longer wish to use the values configured by the modem setup 
program, erase expsetup.pro and specify the necessary values in basein.pro.

NOTE: Many modems can successfully connect to the network using 
the Expedite Base for Windows default configuration. The modem 
setup program is used to configure a modem that cannot connect to the 
network by default. If your modem can already connect to the network, 
it is not necessary for you to use the modem setup program.

Parameter: Description:

MODEMINIT Modem initialization string

MODEMRESET Modem reset string

PORT Communications port number
299



Expedite Base for Windows Programming Guide

Running the modem setup program
Before starting the modem setup program, you should have the following information:

■ The modem name. You will be asked to select a modem from the list in the modem setup 
program. If the modem does not appear in the list, you will be able to add it to the modem 
list.

■ The communications port. This is only required if more than one port is detected. You will 
need to identify which port should be used.

■ Make sure that any non-standard communications cards installed on your system have been 
configured using the Windows Control Panel. You will require address and interrupt infor-
mation, which is covered in the communications card documentation. 

The following steps explain how to configure your system using the modem setup program:

1. Open the modem setup program icon. The Expedite Modem Setup window displays.

2. Select Continue to start the program. The Setup Options window displays.

3. Select the arrow in the Communications Port field to choose the desired communications 
port.

You may want to check your system prior to running this program to verify which port you 
want to use.

4. Complete the following to select a modem:

a. Select Change. 

The Select Modem Type window displays a list of modems.

b. Select the desired modem from the list.

If you do not find the modem you want on this list, you can add the modem to the list. 
To add a modem entry to the list, see “Adding a modem entry to the list” on page 301 
for instructions.

c. To view detailed information about the modem selected, select View. After viewing, 
you can return to the Change Modem Type window by selecting OK.

To edit entries, see “Editing a modem entry you previously added to the list” on page 
302 for instructions.

To delete entries, see “Deleting a modem entry you previously added to the list” on page 
302 for instructions.

d. Select OK to enable your changes. 

The Setup Options window displays.

NOTE: To access the help information, select HELP from any 
window that displays the button.
300



Chapter 14. Using the modem setup program and modem scripts

Customizing the modem list in the modem setup program
5. If your country’s network and your modem support MNP, select the Enable MNP Error 
Correction check box to enable the MNP error correction. To remove the check mark, select 
the check box again. If you need more information, contact your marketing representative. 

6. Select Save and Exit to save your modem setup changes. 

The Save Modem Profile window displays. 

(To exit without saving your changes, select Cancel.)

7. Review the modem information. If the information is not correct, select Cancel and modify 
the appropriate information. Otherwise, select OK to save the information. The Modem 
Setup - Save and Exit window displays indicating the information has been saved.

8. Select OK to exit the program.

Customizing the modem list in the modem setup program 
Modems not listed in the modem setup program can be added to the list. You can also edit or 
delete the modem information that you originally added. Note that the modem information 
provided with Expedite Base for Windows cannot be changed or deleted.

Adding a modem entry to the list 
You can add a modem not currently listed in the modem setup program. To do this, complete 
steps 1 through 4a on page 300 before completing the following:

1. Select Add. The Add A New Modem window displays.

2. Complete the following fields:

3. Select Save to save the new modem information. The Save New Modem window displays.

4. Select OK after reviewing the information. The Change Modem Type window displays with 
the new modem added to the modem list (and automatically selected).

To set this modem as the one to use with Expedite Base for Windows, continue with step 4d on 
page 300.

NOTE: Your modem may not support MNP error correction. To 
determine if it does, refer to the documentation for your modem.

Name The name you want displayed in the list.

Reset The string used to set the modem to a known state, usually to the factory 
defaults. A default is provided in this field. You can change it if desired.

Initialization The string used to set up the modem for use by Expedite Base for 
Windows. A default is provided in this field. You can change it if desired. 
Also, for assistance in building this information, select Prompt to display 
the Build a Modem Initialization String window.

MNP Disable The string used to disable MNP, if applicable.

MNP Enable The string used to enable MNP, if applicable.
301



Expedite Base for Windows Programming Guide

Customizing the modem list in the modem setup program
Editing a modem entry you previously added to the list 
You can edit information for a modem that you added to the modem list. To do this, complete 
steps 1 through 4a on page 300 before completing the following:

1. Select the modem you want to modify and select Edit. If you selected a modem you previ-
ously added, the Edit A New Modem window displays.

If you selected a modem supplied with this program, you will receive a message saying that 
you cannot change this modem entry, but you can create a new modem entry using this infor-
mation. If this is the case, select OK to proceed and continue with step 2 on page 301 in the 
"Adding a modem entry to the list" section.

2. Change any of the following fields:

3. Select Save to save the changed modem information. The Save Modem Changes window 
displays.

4. Select OK after reviewing the information. The Change Modem Type window displays with 
the new modem added to the modem list (and automatically selected).

To set this modem as the one to use with Expedite Base for Windows, continue with step 4d on 
page 300.

Deleting a modem entry you previously added to the list 
You can delete a modem entry that you previously added to the list. To do this, complete steps 1 
through 4a on page 300 before completing the following:

1. Select the modem you want to delete and select Delete. If you selected a modem you previ-
ously added, the Modem Setup - Delete Modem window displays. You are not able to delete 
a modem entry that was originally provided with the modem setup program.

2. Select Yes to delete the entry. The entry is removed from the Change Modem Type window 
when it is displayed.

To continue setting up modem setup information, continue with step 4d on page 300.

Name The name you want displayed in the list.

Reset The string used to set the modem to a known state, usually to the factory 
defaults. The previous setting is provided in this field. You can change it 
if desired.

Initialization The string used to set up the modem for use by Expedite Base for 
Windows. The previous setting is provided in this field. You can change it 
if desired. 

MNP Disable The string used to disable MNP, if applicable.

MNP Enable The string used to enable MNP, if applicable.
302



Chapter 14. Using the modem setup program and modem scripts

Creating modem scripts
Creating modem scripts 
You use modem scripts to control your Expedite Base for Windows modem processing. The 
command syntax for modem scripts is the same syntax you use for the input and output files 
(basein.msg and basein.pro) with the addition of support for labels. For information about 
command syntax, refer to See “Understanding command syntax” on page 32. 

There are five types of modem scripts:

The following sections describe how you create modem scripts.

Using labels in modem scripts 
You use labels in modem scripts to control the flow of processing. Labels must have a colon (:) as 
the first character, and must be followed by 1 to 12 characters. The labels you create can consist 
of uppercase or lowercase characters. When Expedite Base for Windows reads the labels, it 
converts them to uppercase. The characters you use in each label must be unique, whether they 
are uppercase or lowercase.

Using variables in modem scripts 
You can use variables in modem scripts to enable users with different systems to use the same 
script. For example, instead of specifying the phone number in a script, specify the %PHONE% 
variable. Expedite Base for Windows will replace %PHONE% with a phone number that you 
specified in your profile. By using variables in modem scripts, other users can use the script 
without modifying it first.

NOTE: A modem script cannot contain more than 100 commands.

Modem initialization This script provides commands to the modem to initialize it for 
connectivity.

Connect script Expedite Base for Windows runs this script each time it attempts to 
dial. The default name for the connect script is cnnct.scr.

Disconnect script Expedite Base for Windows runs this script each time it completes 
dialing. The default name for the disconnect script is discnnct.scr.

Reset script This script provides commands to the modem to reset the settings to 
some other required configuration.

 message script

This script can be used to define the search strings for a Service 
Manager screen that has been customized. The name of the file must 
be welcmsg.scr. This file generally is not needed in the United States.
303



Expedite Base for Windows Programming Guide

Using variables in modem scripts
The following table shows a list of variables you can use in modem scripts and the commands 
with which you would most likely use the variables. However, you are not limited to using the 
variables with the commands listed in the recommended usage column.

Variable Description Recommended usage

%esc% Telephone escape sequence SAY

%phone% Telephone number SAY

%ptype% Telephone type (tone or pulse) SAY

%init% Modem initialization string SAY

%reset% Modem reset string SAY

%baud% Speed to open the port OPENPORT AND 
IFANSWER

%cnnctbaud% Connection data rate IFVALUE, GETVALUE

%hotline% Define the string after which the Help Desk 
phone number will be found on the screen

GETVALUE

%termid% Define the string after which the terminal 
ID will be found on the screen

GETVALUE

%logon% Define the string to signal the logon 
prompt on the screen

GETVALUE

%xhh% (see note 1) Hex characters Any parameter that 
accepts variables

%netinit% Secondary network setup parameters SAY

%netpw% (see note 2) Secondary network password SAY

%netaddr% Secondary network address SAY

%user1% The user-defined USER1 value Any parameter that 
accepts variables

%user2% The user-defined USER2 value Any parameter that 
accepts variables

%user3% The user-defined USER3 value Any parameter that 
accepts variables

NOTE:

■ You can specify multiple hex characters in a string by using 
multiple occurrences of xHH inside the % variable delimiters:
        %xHHxHHxHHxHH%
        %x0Dx0Ax04%

■ If you specify ENCRYPT(Y) on the IDENTIFY command in the 
profile, you must encrypt the NETPW value. Use 167 as the 
encryption key value.
304



Chapter 14. Using the modem setup program and modem scripts

Using modem script commands
The percent signs around a variable name tell Expedite Base for Windows to substitute the value 
of the variable. For example, in the following command: 

OPENPORT BAUD(%BAUD%);

the string %BAUD% will be replaced by the data rate specified in your profile.

If you are storing a value with the variable, you do not use percent signs on the variable name. In 
the following example:

GETVALUE AFTER(CONNECT) INTO(CNNCTBAUD);

the GETVALUE command gets the string after the CONNECT and assigns this value to the variable 
CNNCTBAUD.

Using modem script commands 
This section contains information about the commands and parameters you can use in modem 
scripts, along with the page numbers on which they are discussed.

■ CLEARBUFFER, page 306

Use this command to clear the buffer that stores data received by the GETANSWER command 
if you do not want new data appended to data already in the buffer.

■ CLOSEPORT, page 306

Use this command to close the port specified in the profile.

■ GETANSWER, page 307

Use this command to read the data from the asynchronous port into a buffer.

■ GETVALUE, page 307

Use this command to search for a string in the buffer of data received by the GETANSWER 
command and copy data after that string into a variable.

■ GO, page 308

Use this command to jump to a labeled statement.

■ IFANSWER, page 309

Use this command to compare a given value with the contents of the buffer containing the 
results of the GETANSWER command, and then, branch accordingly.

■ IFVALUE, page 310

Use this command to check the data found by the GETVALUE command, which was stored in 
a variable, and compare that value to a string, and branch accordingly.

■ OPENPORT, page 311

Use this command to open the port specified in the profile.

■ RETURN, page 312

Use this command to specify a code value to return to Expedite Base for Windows.
305



Expedite Base for Windows Programming Guide

Using modem script commands
■ SAY, page 313

Use this command to send a string of characters to the asynchronous port.

■ SETLINE, page 314

Use this command to set the data bits, parity, and stop bits when connecting through APBX 
or similar, or for another application.

■ SETPACING, page 314

Use this command to set a pacing value in tenths of seconds to be used on SAY commands.

■ WAIT, page 315

Use this command to have Expedite Base for Windows wait for a specified time before 
proceeding to the next command.

CLEARBUFFER command 
Use the CLEARBUFFER command to clear the buffer that stores data received from the 
asynchronous port by a GETANSWER command. For example, to have the buffer contain only the 
data from the most recent GETANSWER command, issue a CLEARBUFFER command before issuing 
the GETANSWER command. Otherwise, the new data received with each GETANSWER command 
will be appended to existing data.

There are no parameters associated with CLEARBUFFER.

CLOSEPORT command 
Use the CLOSEPORT command to close the port specified in the profile. There are no parameters 
associated with CLOSEPORT.
306



Chapter 14. Using the modem setup program and modem scripts

Using modem script commands
GETANSWER command 
Use the GETANSWER command to read the data from the asynchronous port into a buffer.

Parameters:

Example
For example, the following command will wait up to 5 seconds for data coming from the 
asynchronous port. The data will be stored in a buffer. Use the IFANSWER command to read the 
contents of the buffer.

GetAnswer Timeout(5);

GETVALUE command 
Use the GETVALUE command to search for a string in the buffer of data received and copy data 
after that string into a variable. GETVALUE will copy data up to the next blank. 

Parameters 

For example, when a modem establishes a successful connection, it returns a message that might 
look like the following:

CONNECT 2400

Example
The following command will search the buffer for the string, "CONNECT," and will save the 
string following "CONNECT," in the variable CNNCTBAUD.

TIMEOUT The length of time, in whole seconds, to use as a timeout length when receiving 
data from the asynchronous port. Valid values are 1 to 99. The default is 2 
seconds.

MODE The mode to receive data, which can be:

ASYNC Expedite Base for Windows receives all the data on the line for the 
time specified in the TIMEOUT parameter into the buffer. ASYNC is the 
default for MODE.

LINE Expedite Base for Windows receives all the data from the async port 
up to the next carriage return (ASCII X’0D’) into the buffer.

In either case, GETANSWER terminates if the async port is quiet for the length of 
time specified for TIMEOUT. Expedite Base for Windows adds the data received up 
to that point to the buffer. The maximum length that the buffer can receive is 1K.

AFTER Specifies a string you are searching for. The maximum length is 10 characters.

INTO Specifies the name of the variable that will store the data you are getting. When you 
specify the name of the variable, do not use the percent signs. Maximum length is 
20 characters.
307



Expedite Base for Windows Programming Guide

Using modem script commands
GetValue  After(CONNECT ) Into(CNNCTBAUD); 

GO command 
Use the GO command to jump to a labeled statement. 

Parameters 

Example
For example, the following command will go to a label called "Loop" a maximum of three times:

GO TO(LOOP) MAXREPEAT(3); 

The following example shows how to use the GO command to jump to a labeled RETURN 
statement.

Go to(exit_ok);
...
...

# Normal return - continue processing
:exit_OK
Return code(0);

NOTE: The variable name CNNCTBAUD is used without the percent 
signs, because you are putting a value into the variable instead of 
asking Expedite Base for Windows to make a substitution.

TO This is the label on the line that you want to go to. The label can be up to 12 
characters. This is a required parameter.

MAXREPEAT This is the maximum number of times that you want to execute this command. 
Valid values are 1 to 99. The default is 99 times.

NOTE: Using this command you may accidentally create a for-loop 
with no end. Expedite Base for Windows will not detect logic errors of 
this kind in your script. Therefore, only use this command to jump to a 
labeled RETURN statement. To make a for-loop, use the GETANSWER-
IFANSWER commands. See the example with the “IFANSWER 
command” on page 309.
308



Chapter 14. Using the modem setup program and modem scripts

Using modem script commands
IFANSWER command 
Use the IFANSWER command to compare a given value against the contents of the buffer 
containing the results of the GETANSWER command. The comparisons that Expedite Base for 
Windows makes when you issue an IFANSWER command are case sensitive. The search is for the 
exact value you specify for the TO parameter in the IFANSWER command.

Parameters 

Example
For example, the following command will check to see if the data in the buffer contains the word 
ERROR and will branch to the label EXIT if this is true.

IfAnswer is(EQUAL) to(ERROR) goto(EXIT);

For more information, see “Example 2” on page 316.

IS You can specify either Equal or Notequal to create a conditional statement. This 
parameter is required.

EQUAL The statement is true if Expedite Base for Windows finds the value 
you specify for the TO parameter in the buffer.

NOTEQUAL The statement is true if Expedite Base for Windows does not find the 
value you specify for the TO parameter in the buffer.

TO Expedite Base for Windows searches the buffer for the value you specify for this 
parameter when you issue the INANSWER command. Remember, Expedite Base for 
Windows searches for the value exactly as it appears here. The search is case 
sensitive. You can use up to 30 characters. This parameter is required.

MAXREPEAT This is the maximum number of times that you want to execute this command. Use 
MAXREPEAT to create a for-loop in the script. Valid values are 1 to 99. The default is 
99 times.

GOTO This is the label on the line that you want to go to if the comparison you specified 
for the IFANSWER command is true. This parameter is required. The label name can 
be up to 12 characters.
309



Expedite Base for Windows Programming Guide

Using modem script commands
IFVALUE command 
Use this command to branch to a label in the script, based on the current value of the 
%CNNCTBAUD% variable. (Use the GETVALUE command to set the %CNNCTBAUD% variable.) 

Parameters 

Example
For example, use the following IFVALUE command to check the value of the data rate from the 
CONNECT message from the modem, and redial if it is not 2400 bps.

IfValue of(%CNNCTBAUD%) Is(NotEqual) To(2400) goto(REDIAL);

OF Specifies the variable in which Expedite Base for Windows stored the value 
retrieved with the GETVALUE command. The only valid variable is 
%CNNCTBAUD%. This parameter is required. Maximum length is 11 
characters.

IS Specifies the type of comparison to make. This parameter is required. 
Maximum length is 8 characters.

EQUAL The statement is true if the value of the extracted string 
specified by the OF parameter is the same as the value 
specified by the TO parameter.

NOTEQUAL The statement is true if the value of the extracted string 
specified by the OF parameter is not the same as the value 
specified by the TO parameter.

TO The character string to be compared with the value of the variable specified in 
the OF parameter. This parameter is required. Maximum length is 30 
characters.

GOTO This is the label on the line that you want to go to if the comparison you 
specified for the IFVALUE command is true. The label name can be up to 12 
characters. This parameter is required.

MAXREPEAT This is the maximum number of times that you want to execute this command. 
Valid values are 1 to 99. The default is 99 times.
310



Chapter 14. Using the modem setup program and modem scripts

Using modem script commands
OPENPORT command 
Use this command to open the port specified in the profile.

Parameters 

Example
For example, the following command will open the port at a data rate of 9600 bps, using 8 bits 
with no parity.

OpenPort baud(9600) bits(8);

The following is the recommended OPENPORT command which will use the data rate specified in 
the profile.

OpenPort baud(%BAUD%) bits(8);

BAUD This is the data rate at which you want the port to open. The default data rate is 2400 
bps.

It is best to let Expedite Base for Windows select the data rate based on the rates 
associated with the phone number and the modem by specifying the %BAUD% 
variable as the value for the BAUD parameter, or by omitting the BAUD parameter 
from the command. If you need to specify a data rate, you can use the following 
rates:

• 300

• 1200

• 2400

• 4800

• 9600

• 19200

• 38400

• 56000

• 57600

BITS This number specifies the bit rate (number of data bits) at which you want the port to 
open.

7 data bits, 1 stop bit, even parity. This is the default.

8 data bits, 1 stop bit, no parity.

Although Expedite Base for Windows changes bit rates automatically as needed, you 
can use the BITS parameter to specify a bit rate other than the default rate for some 
modems.
311



Expedite Base for Windows Programming Guide

Using modem script commands
RETURN command 
Use the RETURN command to return a value to Expedite Base for Windows. No matter where you 
put the RETURN command in the script, Expedite Base for Windows stops processing the script 
and returns to Expedite Base for Windows with the value you specify for the CODE parameter. 

Parameters 

Example
For example, the following command will exit the modem script processing with a return code of 
12130, requesting a redial.

Return code(12130);

NOTE: If you do not specify a RETURN command in a modem script, 
Expedite Base for Windows will end with a 12010 return code before 
the modem script commands are processed.

CODE This is the value you want to return to Expedite Base for Windows. 
Specify 1 to 5 numeric characters. Use the value 12130 to have 
Expedite Base for Windows attempt a redial, if the redial count is not 
exceeded. Use the value 12998 to stop Expedite Base for Windows. A 
value of 0 indicates that the connection is successful.

If you use any other value, Expedite Base for Windows will end with 
the specified value.

You should not specify any return code documented in this book, other 
than 0, 12130, and 12998, because it may cause Expedite Base for 
Windows to take an action that you do not expect. Any other return 
code will simply cause Expedite Base for Windows to exit with that 
return code.

This is a required parameter.
312



Chapter 14. Using the modem setup program and modem scripts

Using modem script commands
SAY command 
Use this command to send a string of characters to the modem or network. You can tell Expedite 
Base for Windows to pace the string, which means that every character sent is followed by a 
pause. You specify the duration of the pause with the SETPACING command. The default pace 
value is one tenth of a second if you do not use the SETPACING command.

Parameters 

Example
For example, the following command will send the modem initialization string to the modem. 
You can specify a modem initialization string using the MODEMINIT parameter on the DIAL 
command. This string is substituted in the variable %INIT%.

Say string(%INIT%) paced(y);

Expedite for Windows will send the string to the modem with a one-tenth second wait in between 
each character. Expedite Base for Windows will also send a carriage return to the modem after 
the string is sent.

STRING These are the characters you want to send to the modem.

To send only a carriage return, use CR(Y) and omit the STRING parameter.

The STRING parameter is required on the SAY command if you do not use the CR 
parameter.

The maximum length is 80 characters, including variables.

CR This parameter indicates whether or not you want a carriage return sent after the 
string. Valid values are:

y Indicates that you want a carriage return sent after the string. This is the 
default.

n Indicates that you do not want a carriage return sent after the string.

The CR parameter is required in the SAY command if you do not use the 
STRING parameter. Usually, if you are sending the modem attention 
string (+++), you do not want to send a carriage return to the modem.

PACED Indicates whether or not you want the string to be sent with a delay between each 
character. You specify the length of the delay with the SETPACING command if 
you want some other value besides the default one-tenth second delay.

N Indicates that you do not want the data sent with a delay between 
characters. This is the default.

Y Indicates that you want the data sent with a specified delay between 
each character.
313



Expedite Base for Windows Programming Guide

Using modem script commands
SETLINE command 
Use this command to leave the asynchronous line in a particular state when Expedite Base for 
Windows has completed or when connecting through a phone switch.

Use this command in the disconnect or reset modem script files to set the line for an application 
other than Expedite Base for Windows, and to specify the data bits, parity, and stop bits. You can 
also use the SETLINE command in the init or connect scripts to connect through a PBX or similar 
installation.

When Expedite Base for Windows communicates with the network, it sets the line to either 7bit-
even-1 or 8bit-none-1, depending on the type of communication used. However, if you set the 
line to anything other than 7bit-even-1 in the connect script, set it back to 7bit-even-1 with 
another SETLINE command before the dial command is issued in the connect script, or Expedite 
Base for Windows cannot connect to the network.

Parameters 

SETPACING command 
Use this command to set a pacing value in tenths of seconds to be used on the SAY command. To 
use pacing on a SAY command, you must use the PACED parameter on the SAY command. You 
only need to specify the SETPACING command once at the beginning of a script; it will be valid 
for the entire script.

Parameters 

Example
For example, the following command will set the pacing value to five-tenths of a second. This 
pacing value is used if you specify PACED(Y) on the SAY command.

SetPacing tenths(5);

DATABITS Indicates 7- or 8-bit communications. The default is 8.

PARITY Indicates even, odd, or no parity. The default is none.

STOPBITS Indicates 1 or 2 stop bits. The default is 1.

TENTHS The length of time, in tenths of a second, to set the pacing value. Valid values are 
0 to 99 seconds.

If you do not specify TENTHS, the default value will be one tenth of a second.
314



Chapter 14. Using the modem setup program and modem scripts

Sample modem scripts
WAIT command 
Use this command to have Expedite Base for Windows wait for a specified time before 
proceeding to the next command.

Parameters 

Example
For example, the following command will cause Expedite Base for Windows to wait three 
seconds before proceeding to the next command:

Wait seconds(3);

Sample modem scripts
This section provides examples on how to:

■ Use conditional branching in modem scripts
■ Create a for-loop in modem scripts
■ Check the value of a variable in a script
■ Use the welcome message script

Example 1
In the following example, a statement compares a given value against the receive buffer 
(containing the results of the GETANSWER command), and then branches according to return 
code. The script ends with a return code 0 if Expedite Base for Windows received OK or 12130 if 
Expedite Base for Windows received ERROR. Otherwise, Expedite Base for Windows continues 
processing.

ClearBuffer;
GetAnswer Timeout(5);
IfAnswer is(Equal) to(OK) goto(Exit_OK);
IfAnswer is(Equal) to(ERROR) goto(Exit_BAD);

.

.

.
:Exit_BAD              # Bad connection - redial

Return code(12130);
:Exit_OK               # No problems - connected to Service Manager

Return code(0);

SECONDS The length of time, in whole seconds, that you want Expedite Base for Windows 
to suspend activity. Valid values are 1 to 99 seconds. The default is 2 seconds.
315



Expedite Base for Windows Programming Guide

Sample modem scripts
Example 2
To create a for-loop in the script, use the GETANSWER-IFANSWER commands with a MAXREPEAT 
as follows:

# Send the ’reset to factory config’ command and check for OK or ERROR

Say String(AT &F);

:check_1

GetAnswer Timeout(2);
IfAnswer is(Equal) to(ERROR) goto(ok_1);
IfAnswer is(NotEqual) to(OK) goto(check_1) MaxRepeat(2);

:ok_1

This example shows how to read data from the modem for two seconds, and then check if the 
modem responded with ERROR or OK. If the modem did not respond with either ERROR or OK 
after the two seconds, then Expedite Base for Windows will repeat the read (GETANSWER) and 
compare (IFANSWER). This statement will be executed a maximum of two times.

Notice that the SAY command is outside the for-loop, which is between the two labels check_1 
and ok_1. If you create a for-loop that includes a SAY command, you may not get the results you 
expected if the modem is slow to respond. When the string is repeated to the modem during the 
loop execution, the modem will try to respond to each request. The modem’s response to the first 
request will cause Expedite Base for Windows to execute the next command. The next response 
from the modem will actually be for the same SAY command executed earlier during the for-loop, 
but Expedite Base for Windows will interpret it as the response to the next GETANSWER 
command.

Example 3
The following example shows how to obtain the data rate at which the modems are actually 
connected and exit if the data rate is not what it is supposed to be. Use the GETVALUE command 
with IFVALUE in the connect script as follows. Note that this is not a complete script.

# Now send the dial command to the modem

Say string(ATD%ptype%%esc%%phone%);

# Wait for the CONNECT from the modem for 60 seconds (30 repeats * 2 
seconds)

:check_3

GetAnswer Timeout(2);
IfAnswer is(NotEqual) to(CONNECT) goto(check_3) MaxRepeat(30);
IfAnswer is(NotEqual) to(CONNECT) goto(NoConnect);

# Since we just got the connect message, search the buffer for the 
connect
# data rate and store it into CNNCTBAUD. First make sure we got the
# whole string back from the modem by issuing a GetAnswer command
# with a timeout of 0 seconds.

GetAnswer timeout(0);
GetValue after(CONNECT ) into(CNNCTBAUD);

# If we didn’t connect at the highest data rate we can support,
# exit with a redial request.
316



Chapter 14. Using the modem setup program and modem scripts

Sample modem scripts
IfValue of(%CNNCTBAUD%) is(NotEqual) to(%BAUD%) goto(NoConnect);

# Return code 12130 will cause Expedite to redial
:NoConnect
Return code(12130);

Example 4
The following example shows how to define the search strings for the Customer Care Help Desk 
phone number and the terminal ID if the Service Manager screen has been customized. You may 
include these commands in welcmsg.scr, or, if you are using dial access to the network and 
specified an INITSCR parameter on the DIAL command, you can include them in your initialization 
script or dial connect script.

GetValue  After(RING: ) Into(HOTLINE);
GetValue  After(TERMINAL: ) Into(TERMID);

Example 5
The following is the modem script included as a sample with Expedite Base for Windows, which 
you can use as an example of the modem script commands described in this chapter.

# Clear the receive buffer

ClearBuffer ;

# Close and open the port

ClosePort ;
OpenPort  baud(%BAUD%) Bits(8);

#Send the ’reset to factory config’ command and check for OK or ERROR

Say String(%RESET%);

:check_1

GetAnswer Timeout(2);
IfAnswer is(Equal) to(ERROR) goto(ok_1);
IfAnswer is(NotEqual) to(OK) goto(check_1) MaxRepeat(2);

# Send the modem initialization string

:ok_1

ClearBuffer ;
Say String(%INIT%) ;

:check_2

GetAnswer Timeout(2);
IfAnswer is(Equal) to(ERROR) goto(ok_2);
IfAnswer is(NotEqual) to(OK) goto(check_2) MaxRepeat(05);

# Now send the dial command to the modem
:ok_2
ClearBuffer ;
Say String(ATD%PTYPE%%ESC%%PHONE%);

# Wait for the CONNECT from the modem for 60 seconds  (30 * 2)

:check_3

# Use line mode to receive data up to the Carriage Return. This way
317



Expedite Base for Windows Programming Guide

Using modem initialization and reset scripts
# we are sure to get the data rate with the CONNECT message from the 
modem.

GetAnswer Timeout(2) Mode(LINE);
IfAnswer is(NotEqual) to(CONNECT) goto(check_3) maxrepeat(30);
IfAnswer is(NotEqual) to(CONNECT) goto(exit_bad);

# Send characters necessary for autobps for the network gateway

Say CR(Y);
Wait Seconds(1);
Say CR(Y);

# Get the connect data rate and put it in CNNCTBAUD to be displayed
# using the display script.
# We do this here to make sure we received all characters in the
# data rate (instead of CONNECT 240)
GetAnswer Timeout(0);
GetValue after(CONNECT ) into(CNNCTBAUD);

Go to(exit_ok);

# Error return - no CONNECT message

:exit_bad
Return code(12130);

# Normal return - continue processing

:exit_OK
Return code(0);

Using modem initialization and reset scripts 
By default, Expedite Base for Windows uses the information in the connect script when 
attempting to establish a connection to the network, and the disconnect script when discon-
necting. These scripts are run each time you attempt a connection.

If you use other software with your modem that requires a modem setup different than Expedite 
Base for Windows, you may want to use initialization and reset scripts to set up the modem only 
once for the Expedite Base for Windows session and reset for the other software at the end of the 
Expedite Base for Windows session. To do this, create an initialization script with the commands 
to change the modem setup to what Expedite Base for Windows needs, create a reset script to 
change the modem setup to what the other software needs, and specify the names of the scripts 
on the DIAL command in the INITSCR and RESETSCR parameters.

If you use an initialization script, you may want to remove any initialization commands from the 
connect script. There are several things you can do to accommodate this:

1. Modify the connect script that you are currently using, or 

2. Create a new connect script and specify the name of the script in the CNNCTSCR parameter on 
the DIAL command.

It is not necessary to change the disconnect script if you are using the default script that was 
provided with Expedite Base for Windows.

The following is an example of a DIAL command showing how to use initialization, reset, and 
connect scripts.
318



Chapter 14. Using the modem setup program and modem scripts

Using modem initialization and reset scripts
DIAL      PHONE1(123-4567)
INITSCR(myinit.scr)
CNNCTSCR(mycnnct.scr)
RESETSCR(myreset.scr)
;

For example, here is an initialization script:

# Clear the receive buffer
ClearBuffer ;

# Close and open the port

ClosePort ;
OpenPort  baud(%BAUD%) Bits(7);

#Send the ’reset to factory config’ command and check for OK or 
ERROR

Say String(AT &F);

:check_1

GetAnswer Timeout(02);
IfAnswer is(Equal) to(ERROR) goto(ok_1);
IfAnswer is(NotEqual) to(OK) goto(check_1) MaxRepeat(02);

# Send the modem initialization string

:ok_1

ClearBuffer ;
Say String(%INIT%) ;

:check_2

GetAnswer Timeout(02);
IfAnswer is(Equal) to(ERROR) goto(ok_2);
IfAnswer is(NotEqual) to(OK) goto(check_2) MaxRepeat(05);

# Exit after the modem is initialized. Always return 0.
:ok_2
Return code(0);

Here is the corresponding connect script, with initialization commands removed.

# Close and open the port. If initialization script closed the port,
# Expedite will know how to handle this. If we are on a redial,
# we may need to close the port.

ClosePort ;
OpenPort  baud(%BAUD%) Bits(7);

# Send the dial command to the modem.

ClearBuffer ;
Say String(ATD%PTYPE%%ESC%%PHONE%);

# Wait for the CONNECT from the modem for 60 seconds  (30 * 2)

:check_3

GetAnswer Timeout(02);
IfAnswer is(NotEqual) to(CONNECT) goto(check_3) maxrepeat(30);
IfAnswer is(NotEqual) to(CONNECT) goto(exit_bad);

# Send characters necessary for autobps for the network gateway
319



Expedite Base for Windows Programming Guide

Using a customized logon screen
Say CR(Y);
Wait Seconds(1);
Say CR(Y);

# Get the connect data rate and put it in CNNCTBAUD to be displayed
# using the display script.
# We do this here to make sure we received all characters in the
# data rate (instead of CONNECT 240)
GetAnswer Timeout(0);
GetValue after(CONNECT ) into(CNNCTBAUD);

Go to(exit_ok);

# Error return - no CONNECT message

:exit_bad
Return code(12130);

# Normal return - continue processing

:exit_OK
Return code(0);

Finally, here is an example of a reset script.

# Clear the receive buffer
ClearBuffer ;

# Close and open the port

ClosePort ;
OpenPort  baud(%BAUD%) Bits(7);

# Send the settings for the other software.

Say String(AT &W1&C2);

:check_1

GetAnswer Timeout(02);
IfAnswer is(Equal) to(ERROR) goto(ok_1);
IfAnswer is(NotEqual) to(OK) goto(check_1) MaxRepeat(02);

:ok_1

ClosePort ;
Return code(0);

Using a customized logon screen 
If the network logon screen has been customized in your country for your local language or for 
other reasons, then Expedite Base for Windows will need to know how to find the Customer Care 
Help Desk hotline number and the terminal ID. You provide the information about the 
customized Service Manager logon screen in a script called welcmsg.scr.

In the United States and some other countries, Expedite Base for Windows searches for the 
default string ASSISTANCE: on the screen to find the hotline number, for TERMID: to find the 
terminal ID for that session, and for ==> to find the logon prompt. If these strings are different in 
your country, specify the strings Expedite Base for Windows should search for in welcmsg.scr.

If you are using  async dial communication, Expedite Base for Windows looks for the 
welcmsg.scr file and if it does not exist, assumes that the default search strings are acceptable. 
See “Creating modem scripts” on page 303 for more information about welcmsg.scr.
320



Chapter 14. Using the modem setup program and modem scripts

Using a customized logon screen
The format of welcmsg.scr is consistent with the other free-format command-style input files. 
The only command that you should use in welcmsg.scr is GETVALUE. See “GETVALUE 
command” on page 307 for more information about the GETVALUE command. The possible 
values for GETVALUE are:

The following is an example of a welcmsg.scr file:

# Find the help desk phone number.

GetValue After(RING: ) Into(HOTLINE);

# Find the termid.

GetValue After(TERMID: ) Into(TERMID);

HOTLINE Text that Expedite Base for Windows should search for to find the Customer 
Care Help Desk phone number. The default is ASSISTANCE:.

TERMID Text that Expedite Base for Windows should search for to find the terminal ID. 
The default is TERMID:.

LOGON Text that Expedite Base for Windows should search for to find the logon prompt. 
The default is ==>.
321



Expedite Base for Windows Programming Guide

Using a customized logon screen
322



© Copyright GXS, Inc. 1998, 2005
Chapter 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the connectivity log and trace files

When you need detailed information about Expedite Base for Windows processing, you can 
inspect the connectivity log and trace files. This chapter describes the connectivity log and trace 
files and provides examples.

Using the connectivity log 
Expedite Base for Windows writes connectivity log data to the file cnnct.log. The log is written 
automatically for COMMTYPE A each time you run the iebase program. You can review the 
connection activity by looking at the contents of this file.

The connectivity log shows what happens while Expedite Base for Windows is attempting to 
connect to the network. This log shows the data sent by Expedite Base for Windows to the 
modem and the data received by Expedite Base for Windows from the modem. Using this infor-
mation, you can determine if a problem occurred while connecting to the network, and if it did, 
how you can correct it.

The connectivity log provides:

■ Date and time the session started
■ Communications port number and data rate used
■ Commands issued to the modem
■ Modem’s response to the commands
■ Phone number dialed
■ Connection message received
■ Status messages showing logon progress
■ Final session return code
■ Information about the use of old or new style connect scripts

For a detailed description of the connectivity log, see “Understanding the connectivity log” on 
page 325.
323



Expedite Base for Windows Programming Guide

Using the connectivity log
Using asynchronous communication with a network communication gateway 
The following shows a sample connectivity log using asynchronous communication and the 
network communication gateway, which is COMMTYPE(A) on the TRANSMIT command. Enclosed 
in parentheses to the far right of some of the modem lines are descriptions of those lines. They 
are not part of the connectivity log.

Expedite Base for Windows Version 4.7 started - Wed July 01 14:40:03 2004

(14:40:03) Closing port                  ->Port: 1
(14:40:05) Opening port                ->Port: 1, Baud: 19200, Parity: 
8
(14:40:06) Closing port                  ->Port: 1
(14:40:07) Opening port                ->Port: 1, Baud: 19200, Parity: 
8
(14:40:07) Send to modem           ->AT&F(Modem setup command)

(14:40:08) Receive from modem  ->AT&F(Modem response)

OK

(14:40:08) Send to modem           ->ATL1X1V1QO&C1&D2(Modem setup 
command)

(14:40:08) Receive from modem  ->ATL1X1V1QO&C1&D2(Modem response)

OK

(14:40:08) Send to modem            ->ATDT9, 554-1101(Dial command)

(14:40:08) Receive from modem  ->ATDT9, 554-1101

(14:40:26) Receive from modem  ->

CONNECT 19200/ARQ(Connect response)

(14:40:26) Send to modem           ->(Carriage returns)

(14:40:27) Send to modem           ->

(14:40:27) Receive from modem  ->

(14:40:30) Receive from modem  ->

(14:40:30) Receive from modem  ->

(14:40:30) Receive from modem  ->
WELCOME TO THE IBM INFORMATION SERVICES.(Welcome message)

(14:40:30) Receive from modem  ->
SYSTEM: IBM0SM01 TERMID: IBMPQADU 98/07/01 14:38:34

(14:40:30) Receive from modem  ->

HELP DESK:  800-727-2222.

(14:40:30) Receive from modem  ->

(14:40:30) Receive from modem  ->
ENTER "HELP" FOR LOGON ASSISTANCE.

(14:40:30) Receive from modem  ->

(14:40:30) Receive from modem  ->
ENTER USERID ACCOUNT.
(14:40:32) Receive from modem  ->
====>  *
324



Chapter 15. Using the connectivity log and trace files

Using the connectivity log
(14:40:32) *  Status  *                  ->Received Welcome Message 
successfully(Status message)
(14:40:32) Send to modem          ->*(Batch logon)
EXP6

(14:40:32) Receive from modem  ->TERMINAL TYPE = EXP6(Modeset command)

(14:40:32) Send to modem          ->*(End text)
(14:40:32) Receive from modem  ->*
(14:40:32) *  Status  *                   ->Completed mode set 
successfully(Status messages)

(14:40:36) *  Status  *                   ->Logged on to IN 
successfully
(14:40:43) Final return code         ->0000(Final return code)
(14:40:44) Send to modem          ->+++(Hang up)
(14:40:46) Send to modem          ->ATH

(14:40:47) Receive from modem  ->*
NO CARRIER
ATH

SYSTEM: IBMOSM
NO CARRIER
ATH

OK

(14:42:40) Closing port                ->Port: 1

Understanding the connectivity log 
This section describes the major elements that make up a connectivity log.

start of expedite base for windows dial connect process
The day, date, and time of the session are on the first line of the connectivity log.

modem commands
The lines marked "Send to modem" are the commands that Expedite Base for Windows 
sends to the modem to be processed. These commands come from the modem script files. 
Most modem commands start with AT. Expedite Base for Windows uses the "+++" to get the 
modem’s attention.

modem responses
The modem responds to the commands Expedite Base for Windows issues. Some modems 
respond by echoing back the command, then delivering a response; other modems only 
deliver a response. The normal response is "OK". If the response is "ERROR", or some 
response other than "OK", the modem is not properly handling the command. Some 
commands result in an error because the modem does not support them. However, a 
response of "ERROR" resulting from an unsupported command is not always cause for 
concern, because the command causing the error response might not be necessary for the 
type of modem you have.

dial command
After Expedite Base for Windows issues the modem setup ("AT") commands, it sends the 
DIAL command. This begins with ATD and is followed by T or P (tone or pulse) and the 
telephone number. After the telephone number is dialed, Expedite Base for Windows waits 
325



Expedite Base for Windows Programming Guide

Using the connectivity log
for an answer. While the PC is waiting for the connection to be made, it issues a receive 
command every two seconds, for a maximum of 30 times. This means that the PC waits a 
total of 60 seconds for the connection.

connection response
When the connection is established, Expedite Base for Windows receives the 
CONNECTxxxx response, where xxxx is the data rate of the connection. You can see how 
long it took to establish the connection by comparing the time displayed on the line that 
shows when the DIAL command was first sent and the line that displays the connect 
statement.

carriage returns
After the connection is made, Expedite Base for Windows sends two carriage returns to the 
modem. On two lines the log shows "Send to modem ->" with no information following it, 
because the log does not display carriage-return characters.

welcome message
Expedite Base for Windows receives the message “Welcome to IBM Global Services” or a 
“Welcome to the IBM Global Network.” The message also includes the system ID, terminal 
ID, date, and time. The message provides a telephone number for the Customer Care Help 
Desk and instructions for getting logon assistance.

welcome message status
After the welcome message, the connectivity log shows the status

“Received Welcome Message successfully.”

start-of-text character and MODESET command
In response to the welcome message status, Expedite Base for Windows sends a start-of-text 
character (x’02’) and the MODESET command ("EXP1"). The MODESET command describes 
the type of connection. EXP1 tells the network that it is an Expedite Base for Windows 
connection. 

MODESET command response
Expedite Base for Windows receives a response to the MODESET command ("Terminal Type 
= EXP1"). After this, Expedite Base for Windows establishes a successful session, and data 
is sent to and from Information Exchange. The connectivity log does not reflect this data. 

end-of-text character
If you are using asynchronous communication, the connectivity log shows the end-of-text 
character (x’03’) that Expedite Base for Windows sends to the modem.

logon status
The connectivity log shows the status message "Logged on to the IBM Global Network 
successfully". If you are using asynchronous communication, the log also shows the 
MODESET status "Completed mode set successfully".

end of expedite base for windows dial connect process
Expedite Base for Windows closes the port, hangs up ("ATH"), and issues the final return 
code.
326



Chapter 15. Using the connectivity log and trace files

Using the connectivity log
Using the connectivity log for problem determination 
The following table shows some modem symptoms, possible causes, and the actions to take for 
each symptom.

Symptom: Questions and actions:

Modem does not respond to 
any commands. The log shows 
"Receive from modem" with 
nothing following it.

Is the modem turned on?
Is the port correct?
Is the data rate correct?

Modem responds with 
"ERROR".

Is this command supported by your modem? Check your 
modem manual.

Is the syntax of the command correct?

The DIAL command is issued, 
but no connect message is 
received from the modem, or a 
connect message is received, 
but the time elapsed since the 
DIAL command was issued is 
greater than 60 seconds.

Listen for the dial sounds. If the modem dials, but there is 
no dial tone:

• Is the phone cable connected to the wall jack?

• Is the phone cable connected to the modem?

• Can you dial on this telephone line with a standard 
telephone?

If there is a dial tone: 

• Did you dial the correct telephone number?

• Did you hear an answer (modem signal)?

• Did you specify an escape character, if one is 
necessary?

If there was a dial tone, but no answer, try an alternative 
telephone number.

If the telephone answers, but the log shows that more than 
60 seconds have elapsed before the connect message, 
change the wait time to greater than 60 seconds.

When the connection is made, 
the modem responds with 
something other than 
CONNECT.

Refer to the modem manual or manufacturer to determine 
how to change the modem response.

Modem responds with 
BUFFER, instead of 
CONNECT.

Refer to the modem manual or manufacturer to determine 
how to disable buffering.

Add the disable command to your modem control file or 
the modem initialization string. For more information, see 
Chapter 14, “Using the modem setup program and modem 
scripts,’’

After successful connection, 
the connectivity log does not 
show the response "Welcome 
to IBM Global Services" or 
"Welcome to the network".

Verify that you are using a valid telephone number to 
access Information Exchange.
327



Expedite Base for Windows Programming Guide

Using the trace files
Using the trace files 
Expedite Base for Windows writes trace data to the iebase.trc file automatically each time you 
run the iebase program. You can review the session activity by looking at the contents of these 
files.

The trace files provide detailed information about Expedite Base for Windows processing. The 
trace files can help you with Expedite Base for Windows problem determination. 

The style of the trace includes a trace tag on each line, which generally looks like =TAGTEXT=> 
and ends with an arrow (<-). The tag text depends on which trace(s) you have selected. The tags 
are as follows:

Using trace file parameters
The seven Expedite Base for Windows traces are:

■ Display trace--TRACE DISPLAY(Y);

To see how Expedite Base for Windows processed the information in the display script 
display.scr, specify DISPLAY(Y) in the TRACE command in basein.pro to turn the display trace 
on. This trace enables you to detect problems with the display script. If you are experiencing 
problems with the display, turn this trace on and run iebase again. Save this file and have it 
available when you contact the Customer Care Help Desk.

■ Modem trace--TRACE MODEM(Y);

The modem trace shows the data to and from the port so you can use it with the CNNCT trace 
if you want to debug your modifications to the modem script. If you have difficulty 
connecting to the network, you can use this trace to determine errors in the dial process. This 
information is also provided in the cnnct.log file. Refer to “Understanding the connectivity 
log” on page 325 to learn about the connectivity log.

■ Modem script command processor logic trace--TRACE CNNCT(Y);

NOTE: You should not write code to do automated processing based 
on the information in the trace files. The following sections describe 
the trace file parameters and provide examples.

Tag text Description Trace

=Message=> General information Any

=Module=> Base logic trace BASE

=Input=> Input file parser IOFILE

=Output=> Output file parser IOFILE

=Data Sent=> Data sent to Information Exchange PROTOCOL

=Data Received=> Data received from Information Exchange PROTOCOL

=Display=> Display status processing DISPLAY

=Modem Send=> Sent to modem MODEM

=Modem Receive=> Received from modem MODEM

CNNCT=> Modem script parsing CNNCT
328



Chapter 15. Using the connectivity log and trace files

Using the trace files
This trace lists each of the commands processed in the modem script files as well as the 
command parameters and their assigned values. This trace can help you locate syntax and 
logic errors in a new or modified modem script file.

■ Information Exchange protocol logic trace--TRACE PROTOCOL(Y);

To see the flow of Information Exchange commands used by Expedite Base for Windows, 
use this parameter. The Customer Care Help Desk uses this trace primarily for problem 
determination.

■ Link level protocol logic trace--TRACE LINK(Y);

To see the flow of data across the communication link during normal Expedite Base for 
Windows processing, use this parameter. The Customer Care Help Desk uses this trace 
primarily for problem determination.

■ Module flow logic trace--TRACE BASE(Y);

To see the logic flow between the Expedite Base for Windows components, use this 
parameter. The Customer Care Help Desk uses this trace primarily for problem determi-
nation.

■ Command parser trace--TRACE IOFILE(Y);

To debug problems with the basein.pro or basein.msg files, use this parameter. For example, 
if you do not understand a return code received from the parsing of these files, you can use 
this trace to see how the file was parsed and to see what caused the return code.

Expedite Base for Windows places all trace data in iebase.trc. All traces are cumulative. Expedite 
Base for Windows does not erase any trace until the session following a successful session or a 
session in which you specify the RESET command line parameter.

All the trace file options default to n (no trace). To select trace options, you change the appro-
priate parameter to y. 

You can look at the trace file with a text editor or a file browse utility. However, if the end-of-file 
characters X’1A’ appear in the trace data, your editor may not display an entire trace file. 

NOTE: Activating too many traces at once can produce a confusing 
trace file. Request only the traces you need for debugging.

NOTE: The trace file may contain messages indicating errors opening 
certain files. During its processing, Expedite Base for Windows works 
with multiple internal files. Not all of these files are necessary for its 
processing. If your trace shows an error opening a file, but processing 
continues normally, you need not be concerned about that message.
329



Expedite Base for Windows Programming Guide

Learning from examples
Learning from examples
The following sections show examples of the following trace files:

■ Modem trace
■ Connect script trace
■ Display trace
■ Command parser trace

Modem trace example 
The following is an example of a modem trace without errors.

Expedite Base for Windows Version 4.7 - Wed Jun 23 14:00:08 2004
.\comprcs.c:00142:=Modem Send=>AT&F<=
.\comprcs.c:00302:=Modem Receive=>AT&F
OK
<=
.\comprcs.c:00142:=Modem Send=>AT&F1<=
.\comprcs.c:00302:=Modem Receive=>AT&F1
OK
<=
.\comprcs.c:00142:=Modem Send=>ATDT9554-1101<=
.\comprcs.c:00443:=Modem Receive=>ATDT9554-1101<=
.\comprcs.c:00443:=Modem Receive=>CONNECT 19200/ARQ/V34/LAPM/V42BIS<=
.\comprcs.c:00142:=Modem Send=><=
.\comprcs.c:00142:=Modem Send=><=
.\comprcs.c:00302:=Modem Receive=>
<=
.\comprcs.c:00443:=Modem Receive=><=
.\comprcs.c:00443:=Modem Receive=><=
.\comprcs.c:00443:=Modem Receive=>WELCOME TO THE IBM INFORMATION 
SERVICES.<=
.\comprcs.c:00443:=Modem Receive=>SYSTEM: IBM0SM03 TERMID: IBMAQVDW 99/
06/23 1
4:00:34<=
.\comprcs.c:00443:=Modem Receive=>CUSTOMER ASSISTANCE: 800-727-2222.<=
.\comprcs.c:00443:=Modem Receive=><=
.\comprcs.c:00443:=Modem Receive=>ENTER "HELP" FOR LOGON ASSISTANCE.<=
.\comprcs.c:00443:=Modem Receive=><=
.\comprcs.c:00443:=Modem Receive=>ENTER USERID ACCOUNT.<=
.\comprcs.c:00443:=Modem Receive=>===> <=
.\comprcs.c:00142:=Modem Send=>
EXP6<=
.\comprcs.c:00302:=Modem Receive=>TERMINAL TYPE = EXP6<=
.\comprcs.c:00142:=Modem Send=><=
.\comprcs.c:00302:=Modem Receive=><=
.\comprcs.c:00142:=Modem Send=>+++<=
.\comprcs.c:00142:=Modem Send=>ATH<=
.\comprcs.c:00302:=Modem Receive=>
OK
ATH
OK
<=

The following is an example of a modem trace with an error in the 
connect script. In this example, an invalid modem command receives an 
330



Chapter 15. Using the connectivity log and trace files

Learning from examples
error response from the modem. If you are having problems connecting to 
the network, you may need to correct invalid modem commands. 

Expedite Base for Windows Version 4.7 - Wed Jun 23 14:10:08 2004
.\comprcs.c:00142:=Modem Send=>AT !A<=
.\comprcs.c:00302:=Modem Receive=>AT !A
ERROR
<=
.\comprcs.c:00142:=Modem Send=>AT&F1<=
.\comprcs.c:00302:=Modem Receive=>AT&F1
OK
<=
.\comprcs.c:00142:=Modem Send=>ATDT9554-1101<=
.\comprcs.c:00443:=Modem Receive=>ATDT9554-1101<=

Connect script example 
The following is an example of a connect script trace without an error.

Expedite Base for Windows Version 4.7 - Mon Aug 02 11:15:32 2004
.\lltrace.c:00071:=CNNCT=>CLEARBUFFER<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>CLOSEPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>WAIT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>SECONDS<=
.\lltrace.c:00073:=CNNCT=>1<=
.\lltrace.c:00071:=CNNCT=>OPENPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>BAUD<=
.\lltrace.c:00073:=CNNCT=>%BAUD%<=
.\lltrace.c:00071:=CNNCT=>BITS<=
.\lltrace.c:00073:=CNNCT=>8<=
.\lltrace.c:00071:=CNNCT=>WAIT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>SECONDS<=
.\lltrace.c:00073:=CNNCT=>1<=
.\lltrace.c:00071:=CNNCT=>CLOSEPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>WAIT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>SECONDS<=
.\lltrace.c:00073:=CNNCT=>1<=
.\lltrace.c:00071:=CNNCT=>OPENPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>BAUD<=
.\lltrace.c:00073:=CNNCT=>%BAUD%<=
.\lltrace.c:00071:=CNNCT=>BITS<=
.\lltrace.c:00073:=CNNCT=>8<=
.\lltrace.c:00071:=CNNCT=>SAY<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>STRING<=
.\lltrace.c:00073:=CNNCT=>%RESET%<=

NOTE: The following example does not show the entire trace, only 
the part of the trace illustrating the error.
331



Expedite Base for Windows Programming Guide

Learning from examples
.\lltrace.c:00071:=CNNCT=>:CHECK_1<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>GETANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TIMEOUT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>EQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>ERROR<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>OK_1<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>NOTEQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>OK<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>CHECK_1<=

.\lltrace.c:00071:=CNNCT=>MAXREPEAT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>:OK_1<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CLEARBUFFER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SAY<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>STRING<=

.\lltrace.c:00073:=CNNCT=>%INIT%<=

.\lltrace.c:00071:=CNNCT=>:CHECK_2<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>GETANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TIMEOUT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>EQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>ERROR<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>OK_2<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>NOTEQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>OK<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>CHECK_2<=

.\lltrace.c:00071:=CNNCT=>MAXREPEAT<=

.\lltrace.c:00073:=CNNCT=>05<=

.\lltrace.c:00071:=CNNCT=>:OK_2<=
332



Chapter 15. Using the connectivity log and trace files

Learning from examples
.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CLEARBUFFER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SAY<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>STRING<=

.\lltrace.c:00073:=CNNCT=>ATD%PTYPE%%ESC%%PHONE%<=

.\lltrace.c:00071:=CNNCT=>:CHECK_3<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>GETANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TIMEOUT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>MODE<=

.\lltrace.c:00073:=CNNCT=>LINE<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>EQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>BUSY<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>EXIT_BAD<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>EQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>NO CARRIER<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>EXIT_BAD<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>NOTEQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>CONNECT<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>CHECK_3<=

.\lltrace.c:00071:=CNNCT=>MAXREPEAT<=

.\lltrace.c:00073:=CNNCT=>30<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>NOTEQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>CONNECT<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>EXIT_BAD<=

.\lltrace.c:00071:=CNNCT=>SAY<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CR<=

.\lltrace.c:00073:=CNNCT=>Y<=

.\lltrace.c:00071:=CNNCT=>WAIT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SECONDS<=

.\lltrace.c:00073:=CNNCT=>1<=
333



Expedite Base for Windows Programming Guide

Learning from examples
.\lltrace.c:00071:=CNNCT=>SAY<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CR<=

.\lltrace.c:00073:=CNNCT=>Y<=

.\lltrace.c:00071:=CNNCT=>GETANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TIMEOUT<=

.\lltrace.c:00073:=CNNCT=>0<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>EQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>NO CARRIER<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>EXIT_BAD<=

.\lltrace.c:00071:=CNNCT=>GETVALUE<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>AFTER<=

.\lltrace.c:00073:=CNNCT=>CONNECT <=

.\lltrace.c:00071:=CNNCT=>INTO<=

.\lltrace.c:00073:=CNNCT=>CNNCTBAUD<=

.\lltrace.c:00071:=CNNCT=>GO<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>EXIT_OK<=

.\lltrace.c:00071:=CNNCT=>:EXIT_BAD<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>RETURN<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CODE<=

.\lltrace.c:00073:=CNNCT=>12130<=

.\lltrace.c:00071:=CNNCT=>:EXIT_OK<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>RETURN<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CODE<=

.\lltrace.c:00073:=CNNCT=>0<=

.\lltrace.c:00071:=CNNCT=>:HANGUP<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>WAIT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SECONDS<=

.\lltrace.c:00073:=CNNCT=>1<=

.\lltrace.c:00071:=CNNCT=>SAY<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>STRING<=

.\lltrace.c:00073:=CNNCT=>+++<=

.\lltrace.c:00071:=CNNCT=>CR<=

.\lltrace.c:00073:=CNNCT=>N<=

.\lltrace.c:00071:=CNNCT=>WAIT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SECONDS<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>SAY<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>STRING<=
334



Chapter 15. Using the connectivity log and trace files

Learning from examples
.\lltrace.c:00073:=CNNCT=>ATH<=

.\lltrace.c:00071:=CNNCT=>WAIT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SECONDS<=

.\lltrace.c:00073:=CNNCT=>1<=

.\lltrace.c:00071:=CNNCT=>GETANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TIMEOUT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>NOTEQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>OK<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>HANGUP<=

.\lltrace.c:00071:=CNNCT=>MAXREPEAT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>CLOSEPORT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>RETURN<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CODE<=

.\lltrace.c:00073:=CNNCT=>0<=

The following is an example of a connect script trace with an error.

Expedite Base for Windows Version 4.7 - Mon Aug 02 12:11:49 2004
.\lltrace.c:00071:=CNNCT=>CLEARBUFFER<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>CLOSEPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>WAIT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>SECONDS<=
.\lltrace.c:00073:=CNNCT=>1<=
.\lltrace.c:00071:=CNNCT=>OPEPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>OPEPORT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>:HANGUP<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>WAIT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>SECONDS<=
.\lltrace.c:00073:=CNNCT=>1<=
.\lltrace.c:00071:=CNNCT=>SAY<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>STRING<=
.\lltrace.c:00073:=CNNCT=>+++<=
.\lltrace.c:00071:=CNNCT=>CR<=
.\lltrace.c:00073:=CNNCT=>N<=
.\lltrace.c:00071:=CNNCT=>WAIT<=
.\lltrace.c:00073:=CNNCT=><=
.\lltrace.c:00071:=CNNCT=>SECONDS<=
.\lltrace.c:00073:=CNNCT=>2<=
.\lltrace.c:00071:=CNNCT=>SAY<=
335



Expedite Base for Windows Programming Guide

Learning from examples
.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>STRING<=

.\lltrace.c:00073:=CNNCT=>ATH<=

.\lltrace.c:00071:=CNNCT=>WAIT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>SECONDS<=

.\lltrace.c:00073:=CNNCT=>1<=

.\lltrace.c:00071:=CNNCT=>GETANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>TIMEOUT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>IFANSWER<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>IS<=

.\lltrace.c:00073:=CNNCT=>NOTEQUAL<=

.\lltrace.c:00071:=CNNCT=>TO<=

.\lltrace.c:00073:=CNNCT=>OK<=

.\lltrace.c:00071:=CNNCT=>GOTO<=

.\lltrace.c:00073:=CNNCT=>HANGUP<=

.\lltrace.c:00071:=CNNCT=>MAXREPEAT<=

.\lltrace.c:00073:=CNNCT=>2<=

.\lltrace.c:00071:=CNNCT=>CLOSEPORT<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>RETURN<=

.\lltrace.c:00073:=CNNCT=><=

.\lltrace.c:00071:=CNNCT=>CODE<=

.\lltrace.c:00073:=CNNCT=>0<=

In this example, there is a syntax error in the modem script file;  the command OPENPORT is 
misspelled as OPEPORT.

Display trace example  
The following example shows part of display.scr.

FIRST  TEXT(Expedite Base for Windows Version %VERSION%);
#
DIALING  TEXT(Dialing the Network);
DIALING  TEXT(Phone number: %PHONE%);
#
CONNECTING TEXT(Connecting to the Network);
CONNECTED  TEXT(Successful %CNNCTYPE% Connection);
#
WELCOMEMSG  TEXT(Termid: %TERMID%);
WELCOMEMSG  TEXT(Help Desk: %HOTLINE%);
#
INLOGON  TEXT(Successful Network logon);
#
START TEXT(Info Exch Account: %IEACCOUNT% %IEUSERID%);
START TEXT(Started session with Information Exchange);
#

NOTE: The return code in the example above reflects the number in 
the return statement in discnnct.scr and is not from Expedite Base for 
Windows.
336



Chapter 15. Using the connectivity log and trace files

Learning from examples
SEND       TEXT(Sending file:    %FILENAME%);
SEND       TEXT(Class/File Size: %CLASS% %FILESIZE%);

The following example shows the first part of a display trace that shows what Expedite Base for 
Windows reads from the display.scr file. It shows each of the parameters and the values 
associated with those parameters.

Expedite Base for Windows Version 4.7 - Wed Aug 04 08:54:14 2004
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Expedite Base for Windows Version 
%VERSION%<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Dialing the Network<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Phone number: %PHONE%<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Connecting to the Network<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Successful %CNNCTYPE% Connection<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Termid: %TERMID%<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Help Desk: %HOTLINE%<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Successful Network logon<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Info Exch Account: %IEACCOUNT% %IEUSERID%<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Started session with Information Exchange<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Sending file:    %FILENAME%<=
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Class/File Size: %CLASS% %FILESIZE%<=

The following is an example of a display trace showing an error in the display script. In this 
example, the TEXT parameter was misspelled as TXT.

Expedite Base for Windows Version 4.7 - Wed Aug 04 10:01:07 2004
.\lltrace.c:00073:=Display=>TEXT<=
.\lltrace.c:00075:=Display=>Expedite Base for Windows Version 
%VERSION%<=
.\lltrace.c:00073:=Display=>TXT<=
.\lltrace.c:00075:=Display=>Dialing the Network<=

Command parser example  
The following example shows a command parser trace with an error in the profile basein.pro. In 
this example, the user forgot to put a right parenthesis at the end of the PRODUCT parameter 
value INFOEXCH.

Expedite Base for Windows Version 4.7 - Wed Aug 04 14:38:59 2004
.\parscmd.c:00509:=Input=>Command ->IDENTIFY<-, Value-><=
.\parscmd.c:00509:=Input=>Command ->INACCOUNT<-, Value->atap<=
.\parscmd.c:00509:=Input=>Command ->INUSERID<-, Value->user01<=
.\parscmd.c:00509:=Input=>Command ->INPASSWORD<-, Value->XXXXXXXX<=
.\parscmd.c:00509:=Input=>Command ->IEACCOUNT<-, Value->atap<=
.\parscmd.c:00509:=Input=>Command ->IEUSERID<-, Value->user01<=
337



Expedite Base for Windows Programming Guide

Using the link trace file
.\parscmd.c:00509:=Input=>Command ->IEPASSWORD<-, Value->XXXXXXXX<=

.\parscmd.c:00509:=Input=>Command ->PRODUCT<-, Value->INFOEXCH     
;TRANSMIT   COMMTYPE(T)            # Connect using asynchronous leased 
line connection.       REONNECT(0)#     MSGSIZE(5000)#     
COMMITDATA(5000)#     MAXMSGS(1)       RECOVERY(C)     AUTOSTART(Y)     
AUTOEND(Y)#  <=
.\outprcs.c:00220:=Output=>RETURN(14030) ERRDESC(Parameter value too 
long.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(EXPLANATION:  A parameter value in 
the command file is invalid because) <=
.\outprcs.c:00220:=Output=>ERRTEXT(it is longer than the maximum length 
permitted for the parameter.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(This is sometimes caused by 
unbalanced parentheses.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(USER RESPONSE:  Check the message 
response file, BASEOUT.MSG,) <=
.\outprcs.c:00220:=Output=>ERRTEXT(profile response file, BASEOUT.PRO, 
or response work file,) <=
.\outprcs.c:00220:=Output=>ERRTEXT(TEMPOUT.MSG, to determine which 
command produced the error.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(Correct the appropriate command file 
and retry the program.);<=
.\outprcs.c:00220:=Output=>PROFILERC(14030) ERRDESC(Parameter value too 
long.);<=
.\outprcs.c:00220:=Output=>SESSIONEND(14030) ERRDESC(Parameter value 
too long.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(EXPLANATION:  A parameter value in 
the command file is invalid because) <=
.\outprcs.c:00220:=Output=>ERRTEXT(it is longer than the maximum length 
permitted for the parameter.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(This is sometimes caused by 
unbalanced parentheses.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(USER RESPONSE:  Check the message 
response file, BASEOUT.MSG,) <=
.\outprcs.c:00220:=Output=>ERRTEXT(profile response file, BASEOUT.PRO, 
or response work file,) <=
.\outprcs.c:00220:=Output=>ERRTEXT(TEMPOUT.MSG, to determine which 
command produced the error.) <=
.\outprcs.c:00220:=Output=>ERRTEXT(Correct the appropriate command file 
and retry the program.);<=

Using the link trace file 
The link level protocol logic trace, TRACE LINK(Y), shows the flow of data across the communi-
cation link during Expedite Base for Windows processing. The Customer Care Help Desk uses 
this trace for problem determination. Expedite Base for Windows places this trace into the file 
named iebase.trc.

The data in the link trace is in binary format. You must provide this trace to the Customer Care 
Help Desk by either mailing a diskette or by sending the file to Information Exchange using 
another Expedite system.
338



© Copyright GXS, Inc. 1998, 2005
Chapter 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using TCP/IP communications 

With TCP/IP communication, Expedite Base for Windows can connect to the AT&T Global 
Network or the Internet once a TCP/IP connection is established. For TCP/IP dial communi-
cation, Expedite Base for Windows 4.7 will use the AT&T Net Client to establish the TCP/IP 
connection. For TCP/IP leased-line communication with the AT&T Global Network or dial or 
leased-line communication with the Internet, you establish the TCP/IP connection prior to 
starting Expedite Base for Windows 4.7.

The install program installs the AT&T Net Client only if it is necessary. If you already have 
installed the same or a higher version of the AT&T Net Client that is included in the Expedite 
Base for Windows 4.7 package, the install program does not install another Net Client on your 
machine. 

You may also upgrade the AT&T Net Client without affecting Expedite Base for Windows. This 
will allow you to add new features and functions to the Net Client without having to make any 
changes to Expedite Base for Windows 4.7.

For TCP/IP communication, the COMMITDATA default is 141000 and the MSGSIZE default is 
47000, which are both higher than the default for other COMMTYPEs.

Preparing for TCP/IP communication

Before you begin TCP/IP dial communication with the AT&T Global Network, follow these 
steps:

1. Install and configure a supported TCP/IP stack.

NOTE: If you are using the AT&T Global Network to connect, your 
network ID must be registered for TCP/IP communication.
339



Expedite Base for Windows Programming Guide

Preparing for TCP/IP communication
2. Ensure the AT&T Net Client is installed and set up correctly, and that you have successfully 
connected to the network once using the Net Client. (This causes the password to be saved in 
the Net Client and a Net Client login profile to be created.) See “Running the installation 
program” on page 10 and “Setting up the AT&T Net Client” on page 12, for more infor-
mation on installing and setting up the AT&T Net Client.

3. Update the TRANSMIT command and add the TCPCOMM command in basein.pro.

4. Update the WIN.INI file if desired.

Before you begin TCP/IP leased-line communication, follow these steps:

1. Install and configure a supported TCP/IP stack. 

2. Update the TRANSMIT command and optionally add the TCPCOMM command in basein.pro.

Before you begin TCP/IP communication using SSL, follow these steps:

1. Install and configure a supported TCP/IP stack. 

2. If you plan to use the Internet to connect, obtain a connection from the Internet Service 
Provider of your choice.

3. Obtain and install an X.509 certficate, following the instructions in the Expedite Base 
iKEYMAN setup document, available at URL: 
http://www.ginternational.com/support/Products/expedite/
Exp_Base_iKEYMAN_setup.pdf.

4. Update the TRANSMIT command to specify COMMTYPE(t).

5. Update either the IDENTIFY command in the basein.pro file or the START command in the 
basein.msg file to specify the keyringfile and keyring password parameters.

Updating the TRANSMIT command 
To indicate that you are using TCP/IP communication, specify the COMMTYPE parameter with the 
value T for TCP/IP leased line or C for TCP/IP dial on the TRANSMIT command in basein.pro. 
The following is an example of the updated TRANSMIT command for TCP/IP leased line:

transmit commtype(t);

If you do not specify T or C for the COMMTYPE, Expedite Base for Windows will use the default 
value A, which indicates asynchronous communication.

NOTE: A TCP/IP stack may have already been installed with the 
operating system. 

NOTE: If you are using TCP/IP communication, you do not need to 
specify the DIAL command in basein.pro.
340



Chapter 16. Using TCP/IP communications

Updating hostname.fil
Including the TCPCOMM command 
If you are using TCP/IP dial communication, you must include the TCPCOMM command in 
basein.pro to specify the AT&T Net Client login profile in the DIALPROFILE parameter. You may 
also use the DIALCOUNT and TIMEOUT parameters to override the Expedite Base for Windows 
defaults for the number of retries and inactivity timeout.

The following is an example of the TCPCOMM command that shows the parameters you use to 
specify the dial login profile and change the retry and inactivity timeout defaults for TCP/IP dial:

TCPCOMM  DIALPROFILE(dialer login profile name)
DIALCOUNT(5)
TIMEOUT(5);

If you are not using the AT&T Net Client, you can include the TCPCOMM command in basein.pro 
with the TIMEOUT parameter specified to override the Expedite Base for Windows defaults for the 
inactivity timeout.

The following is an example of the TCPCOMM command with the parameter you use to change the 
inactivity timeout defaults when you are not using the AT&T Net Client, or if you are using 
leased-line communication.

tcpcomm  timeout(5);

Updating hostname.fil
Expedite Base for Windows comes with a file called hostname.all. This file contains the 
addresses for all regions that can be used to communicate with the network using TCP/IP. During 
installation, you were asked to select the address that you wanted to use for TCP/IP from this list. 
The installation program stored your selection in the file hostname.fil.

If you wish to change this address after installation is completed, you can select the new address 
from hostname.all and copy that address to hostname.fil. Then you can either delete the old 
address from hostname.fil or comment it out by typing a pound sign/hash mark (#) as the first 
character in that line.

TCP/IP entry in the WIN.INI file
One entry, DialDelay, is in the WIN.INI Expedite Base for Windows section for TCP/IP commu-
nication.

DialDelay is the number of seconds Expedite Base for Windows waits when using TCP/IP 
communication before dialing again after a previous dial was unsuccessful.
341



Expedite Base for Windows Programming Guide

TCP/IP entry in the WIN.INI file
342



© Copyright GXS, Inc. 1998, 2005
Appendix A
Expedite Base for Windows error codes and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
messages 

This appendix describes the Expedite Base for Windows and system error codes and messages, 
which are divided into the following categories:

■ Expedite Base for Windows completion codes (0 - 114), page 344

■ Expedite Base for Windows return codes:

• Message command file syntax errors (02014 - 04988), page 346
• Profile command file syntax errors (05018 - 07610), page 372
• Network errors (11801 - 12004), page 381
• Modem script syntax errors (12010 - 12130), page 388
• Display status script syntax errors (12210 - 12300), page 395
• Communication device driver errors (13020 - 13100), page 398
• Parser errors (14000 - 15042), page 399
• Destination verification errors (16020 - 16060), page 401
• EDI errors (17102 - 18300), page 402
• General environment errors (20365 - 23610), page 418
• Session start and end errors (24000 - 24610), page 425
• PF key exit error (25000), page 428
• Internal communications errors (26401 - 26999), page 428
• Session errors (28000 - 29998), page 433
• Unexpected program errors, including SSL errors (31000 - 32000), page 438 

For information on messages generated by Information Exchange, see Information Exchange 
Messages and Formats.

NOTE: The Windows environment does not directly support DOS error level features. 
Expedite Base for Windows writes DOS error codes to the errorlvl text file, allowing 
the user access to this information.
343



Expedite Base for Windows Programming Guide

Expedite Base for Windows completion codes
Expedite Base for Windows completion codes 
The following are Expedite Base for Windows completion codes. The program writes these 
completion codes to the file errorlvl.

0000 Session completed successfully.

Explanation: Expedite Base completed successfully.

User Response: No user action is required.

0001 Expedite is in restart mode.

Explanation: The STATUS command line parameter indicates that Expedite Base for 
Windows is in a restart mode. The next time you run IEBASE, Expedite Base for Windows will 
attempt to continue where the last session ended.

User Response: There is no action necessary if you wish to restart where the last session 
ended. You may wish to check the output files BASEOUT.PRO, BASEOUT.MSG, and 
TEMPOUT.MSG to see if there is a problem which requires a fix.

0101 Invalid command line parameter.

Explanation: Valid command line parameters are VERSION, RESET, STATUS, 
PATH=<pathname>, CHECK, CHKPROFILE, CHKCOMM, and DELAY.

User Response: Correct the command line parameter and try again.

0102 Control path is too long.

Explanation: The path specified by the PATH=<pathname> command line parameter is too 
long. The maximum length is 42 characters.

User Response: Correct the control path and try again.

0103 Control path does not exist.

Explanation: The path specified by the PATH=<pathname> command line parameter does not 
exist.

User Response: Correct the control path and try again.

0104 Profile syntax error. 

Explanation: Expedite Base for Windows encountered a syntax error in the profile, 
BASEIN.PRO.

User Response: Look at the return code specified in the profile response file BASEOUT.MSG 
for a description of the error. Correct the problem and retry the program.

0110 Unable to complete session due to a network problem.

Explanation: Expedite Base for Windows was not able to complete a session because Infor-
mation Exchange was not available, or a timeout occurred while Expedite Base for Windows was 
waiting for a response.
344



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows completion codes
User Response: Wait and retry the program again later. You can use the CYCLE and WAIT 
parameters of the DIAL command to automatically retry a connection at periodic intervals. If the 
problem persists, contact the Customer Care Help Desk.

0111 Session was unsuccessful.

Explanation: The previous session was unsuccessful due to a problem that Expedite Base for 
Windows encountered.

User Response: Look at the return codes specified in the response files for a description of the 
error. Correct the problem and restart the program.

0112 Session completed with warnings.

Explanation: The session completed, but warnings were generated for one or more 
commands. It is possible that not all of the commands were processed successfully.

User Response: Look at the return codes specified in the response files for a description of the 
warnings/errors. If necessary, correct the problems and restart the program.

0113 Session reset recommended.

Explanation: Expedite Base for Windows encountered an error condition which could not be 
resolved by restarting the session. You must reset the session before using Expedite Base for 
Windows again.

User Response: Look at the return codes specified in the response files for a description of the 
error. Correct the problem and restart the session. Refer to the product documentation for infor-
mation about resetting the session.

0114 Session ended in restart mode.

Explanation: An error has occurred which can possibly be resolved by reconnecting to the 
network. Expedite Base for Windows attempts to reconnect automatically, but has exceeded the 
reconnect count.

User Response: Run the program again. If the problem persists, check the session return code 
and correct the error. 
345



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
Expedite Base for Windows return codes

Message command file syntax errors
This section describes the return codes for message command file syntax errors.

2014 ALIAS invalid on LIST command.

Explanation: You specified an invalid value for an ALIAS parameter in the LIST command. 
The first character of the ALIAS is the destination table type and must be blank, g, o, or p. The 
last three characters of the ALIAS are the destination table ID and must be one to three alphanu-
meric characters. If the first character is blank, then the last three characters of the ALIAS 
parameter must be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the LIST command 
in the message command file, BASEIN.MSG, and retry the program.

2032 LISTNAME missing on LIST command.

Explanation: The LISTNAME parameter in the LIST command is missing or blank. A 
LISTNAME must be specified.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which LIST command produced the error. Correct the LIST 
command in the message command file, BASEIN.MSG, and retry the program.

2062 FUNCTION missing or invalid on LIST command.

Explanation: The FUNCTION parameter in the LIST command is missing, or you have 
specified an invalid value. The FUNCTION value must be a, d, e, or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which LIST command produced the error. Correct the LIST 
command in the message command file, BASEIN.MSG, and retry the program.

2064 Invalid entries on LIST command.

Explanation: Either entries were specified in the LIST command with an ‘e’ for FUNCTION 
parameter, or no entries were specified for one of the other FUNCTION values.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which LIST command produced the error. Correct the LIST 
command in the message command file, BASEIN.MSG, and retry the program.

2066 LISTTYPE invalid on LIST command.

Explanation: The LISTTYPE value in the LIST command is invalid. The LISTTYPE value 
must be t, p, a, or g.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the LIST command 
in the message command file, BASEIN.MSG, and retry the program.
346



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
2098 Invalid command sequence on LIST command.

Explanation: A LISTNAME, FUNCTION, or LISTTYPE parameter was specified more than 
once on the LIST command. You can only specify these parameters once in each LIST command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the LIST command 
in the message command file, BASEIN.MSG, and retry the program.

2099 Incomplete destination on LIST command.

Explanation: The list ended or a new destination was started before a previous destination was 
finished. This is usually caused by a missing parameter somewhere in the list. List entries are 
made up of either an ACCOUNT and USERID, or an ALIAS and ALIASNAME. You must 
specify each list entry component next to its counterpart. For example, an ACCOUNT parameter 
should be entered next to a USERID parameter. If you specify the SYSID parameter, you must 
specify it either before the ACCOUNT and USERID parameters to which it belongs or between 
them. The SYSID parameter cannot follow the ACCOUNT and USERID parameters for that 
SYSID.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the LIST command 
in the message command file, BASEIN.MSG, and retry the program.

2201 KEYRINGSTASHFILE and KEYRINGPASSWORD parameters specified.

Explanation: You specified both the KEYRINGSTASHFILE and the KEYRINGPASSWORD 
parameters on the START command. This is not allowed.

User Response: When the file specified in the KEYRINGFILE parameter was created, it was 
either created to have a password or to have its password stored in a stash file. If the file was 
created with a password, specify the password in the KEYRINGPASSWORD  parameter. If the 
password was stored in a stash file, specify the file name in the KEYRINGSTASHFILE 
parameter. Correct the START command to only specify the appropriate parameter.  Retry the 
program.

2202 KEYRINGFILE must be specified.

Explanation: The KEYRINGFILE was not specified.  This is a required parameter.  You must 
specify the name of the KEYRINGFILE.

User Response: When making an SSL connection, there must be a KDB file containing the 
certificate to allow the connection. This filename is specified in the KEYRINGFILE parameter.  
It is a required parameter when SSL is enabled. Correct the START command to specify filename 
of the KEYRINGFILE parameter and retry the program.

2204 No password provided for KEYRINGFILE.

Explanation: They key database or key ring specified in the KEYRINGFILE parameter 
requires a password.

User Response:  Provide either the correct KEYRINGPASSWORD parameter or the 
KEYRINGSTASHFILE associated with the key database specified in the KEYRINGFILE 
parameter and retry the program.
347



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
2402 No destination on CANCEL command.

Explanation: You must specify a destination for this command. You can use ACCOUNT and 
USERID; ALIAS and ALIASNAME; or LISTNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2404 Multiple destinations on CANCEL command.

Explanation: You can specify only one destination in the CANCEL command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2406 Insufficient destination on CANCEL command.

Explanation: You must specify a complete destination for this command. You can use 
ACCOUNT and USERID; ALIAS and ALIASNAME; or LISTNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2414 ALIAS invalid on CANCEL command.

Explanation: You specified an invalid value for the ALIAS parameter in the CANCEL 
command. The first character of the ALIAS is the destination table type and must be blank, g, o, 
or p. The last three characters of the ALIAS are the destination table ID and must be one to three 
alphanumeric characters. If the first character is blank, then the last three characters of the 
ALIAS must be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2444 PRIORITY invalid on CANCEL command.

Explanation: You specified an invalid value for the PRIORITY parameter in the CANCEL 
command. The value of the PRIORITY parameter must be blank or p.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2450 ACK invalid on CANCEL command.

Explanation: You specified an invalid value for the ACK parameter in the CANCEL 
command. The value of the ACK parameter must be blank, h, or t.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.
348



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
2464 STARTDATE invalid on CANCEL command.

Explanation: You specified an invalid value for the STARTDATE parameter in the CANCEL 
command. The format must be YYMMDD, where YY is the last two digits of the year, MM is 
the two-digit month, and DD is the two-digit day or YYYYMMDD where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2466 STARTTIME invalid on CANCEL command.

Explanation: You specified an invalid value for the STARTTIME parameter in the CANCEL 
command. The format must be HHMMSS, where HH is the two-digit hour, MM is the two-digit 
minutes, and SS is the two-digit seconds.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2468 ENDDATE invalid on CANCEL command.

Explanation: You specified an invalid value for the ENDDATE parameter in the CANCEL 
command. The format must be YYMMDD, where YY is the last two-digits of the year, MM is 
the two-digit month, and DD is the two-digit day or YYYYMMDD where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2470 ENDTIME invalid on CANCEL command.

Explanation: You specified an invalid value for the ENDTIME parameter in the CANCEL 
command. The format must be HHMMSS, where HH is the two-digit hour, MM is the two-digit 
minutes, and SS is the two-digit seconds.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.

2472 TIMEZONE invalid on CANCEL command.

Explanation: You specified an invalid value for the TIMEZONE parameter in the CANCEL 
command. TIMEZONE must be either g or l.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program.
349



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
2474 END DATE/TIME is before START DATE/TIME.

Explanation: You specified an end date and time in the CANCEL command that is before the 
start date and time. If you specified either date field with a two-digit year, a sliding window 
technique was used to decide the century value which is used when comparing the start and end 
dates.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which CANCEL command produced the error. Correct the 
CANCEL command in the message command file, BASEIN.MSG, and retry the program. The 
sliding window technique is described in the readme file.

2604 Multiple destinations on AUDIT command.

Explanation: You can specify only one destination in the AUDIT command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2606 Incomplete destination on AUDIT command.

Explanation: You specified an incomplete destination in the AUDIT command. If you specify 
a destination, you must use ACCOUNT and USERID; SYSID, ACCOUNT and USERID; or 
ALIAS and ALIASNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2614 ALIAS invalid on AUDIT command.

Explanation: You specified an invalid value for the ALIAS parameter in the AUDIT 
command. The first character of the ALIAS is the destination table type and must be blank, g, o, 
or p. The last three characters of the ALIAS are the destination table ID and must be one to three 
alphanumeric characters. If the first character is blank, then the last three characters of the 
ALIAS must be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2664 STARTDATE invalid on AUDIT command.

Explanation: You specified an invalid value for the STARTDATE parameter in the AUDIT 
command. The format must be YYMMDD, where YY is the last two digits of the year, MM is 
the two-digit month, and DD is the two-digit day or YYYYMMDD, where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.
350



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
2668 ENDDATE invalid on AUDIT command.

Explanation: You specified an invalid value for the ENDDATE parameter in the AUDIT 
command. The format must be YYMMDD, where YY is the last two digits of the year, MM is 
the two-digit month, and DD is the two-digit day or YYYYMMDD, where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2670 ALTACCT invalid on AUDIT command.

Explanation: You specified ALTACCT and did not specify ALTUSERID or you specified 
ALTACCT and LEVEL 1 or 2. If you specify ALTACCT you must specify ALTUSERID. 
ALTACCT is only supported for LEVEL 3 or higher.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2672 TIMEZONE invalid on AUDIT command.

Explanation: You specified an invalid value in the TIMEZONE parameter on the AUDIT 
command. TIMEZONE must be either g or l.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2674 STATUS invalid on AUDIT command.

Explanation: You specified an invalid value for the STATUS parameter in the AUDIT 
command. STATUS must be blank, u, p, or d.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2676 MSGTYPE invalid on AUDIT command.

Explanation: You specified an invalid value for the MSGTYPE parameter in the AUDIT 
command. MSGTYPE must be s, r, or b.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2678 END DATE is before START DATE.

Explanation: You specified an end date in the AUDIT command that is before the start date. If 
you specified either date field as a two-digit year, a sliding window technique was used to decide 
the century indicator which is used when comparing the start and end dates.
351



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program. The sliding 
window technique is described in the readme file.

2684 LEVEL invalid on AUDIT command.

Explanation: You specified an invalid value for the LEVEL parameter in the AUDIT 
command. LEVEL must be 1, 2, or 3.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which AUDIT command produced the error. Correct the AUDIT 
command in the message command file, BASEIN.MSG, and retry the program.

2802 No destination specified on SEND command.

Explanation: You must specify a destination in the SEND command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2804 Multiple destinations on SEND command.

Explanation: You specified multiple destinations in a SEND command. You can only specify 
one destination

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2806 Incomplete destination on SEND command.

Explanation: You specified an incomplete destination in the SEND command. The destination 
must be an ACCOUNT and USERID; SYSID, ACCOUNT and USERID; ALIAS and 
ALIASNAME; or LISTNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2814 ALIAS invalid on SEND command.

Explanation: You specified an invalid value for the ALIAS parameter in the SEND command. 
The first character of the ALIAS is the destination table type and must be blank, g, o, or p. The 
last three characters of the ALIAS are the destination table ID and must be one to three alphanu-
meric characters. If the first character is blank, then the last three characters of the ALIAS must 
be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.
352



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
2830 No FILEID specified on SEND command.

Explanation: You must specify a FILEID in the SEND command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2834 FILEID invalid on SEND command.

Explanation: You specified an invalid value for the FILEID parameter on the SEND command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2836 FORMAT invalid on SEND command.

Explanation: You specified an invalid value for the FORMAT parameter in the SEND command. 
FORMAT must be y or n. You cannot specify ’Y’ for FORMAT with ’B’ for DATATYPE or ’Y’ for 
DELIMITED.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2844 PRIORITY invalid on SEND command.

Explanation: You specified an invalid value for the PRIORITY parameter in the SEND 
command. PRIORITY must be blank, i, or p.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2846 MODE invalid on SEND command.

Explanation: You specified an invalid value for the MODE parameter in the SEND command. 
MODE must be blank or t.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2848 CHARGE invalid on SEND command.

Explanation: You specified an invalid value for the CHARGE parameter in the SEND 
command. CHARGE must be a numeric character from 1 to 6.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.
353



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
2850 ACK invalid on SEND command.

Explanation: You specified an invalid value for the ACK parameter in the SEND command. 
ACK must be blank, a, b, c, d, e, f, or r.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2872 VERIFY invalid on SEND command.

Explanation: You specified an invalid value for the VERIFY parameter in the SEND command. 
VERIFY must be y, n, or f.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2874 RETAIN invalid on SEND command.

Explanation: You specified an invalid value for the RETAIN parameter in the SEND command. 
RETAIN must be a numeric value from 0 to 180.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2876 DATATYPE invalid on SEND command.

Explanation: You specified an invalid value for the DATATYPE parameter in the SEND 
command. DATATYPE must be a or b.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2878 DELIMIT invalid on SEND command.

Explanation: You specified an invalid value for the DELIMITED parameter in the SEND 
command. DELIMITED must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2894 RECFM invalid on SEND command.

Explanation: You specified an invalid value for the RECFM parameter in the SEND command. 
RECFM must be f or v.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.
354



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
2895 LRECL invalid on SEND command.

Explanation: You specified an invalid value for the LRECL parameter in the SEND command. 
LRECL must be 1 to 5 numeric characters, between 1 and 65535.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2898 COMPRESS invalid on SEND command.

Explanation: You specified an invalid value for the COMPRESS parameter in the SEND 
command. COMPRESS must be y, n or t.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

2899 SELECTRCV invalid on SEND command.

Explanation: You specified an invalid value for the SELECTRCV parameter in the SEND 
command. SELECTRCV must be f, n, or blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SEND command produced the error. Correct the SEND 
command in the message command file, BASEIN.MSG, and retry the program.

3030 No FILEID specified on SENDEDI command.

Explanation: You must specify a FILEID in the SENDEDI command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3034 FILEID invalid on SENDEDI command.

Explanation: You specified an invalid value for the FILEID parameter on the SENDEDI 
command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3044 PRIORITY invalid on SENDEDI command.

Explanation: You specified an invalid value for the PRIORITY parameter in the SENDEDI 
command. PRIORITY must be blank, i, or p.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.
355



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
3046 MODE invalid on SENDEDI command.

Explanation: You specified an invalid value for the MODE parameter in the SENDEDI 
command. MODE must be blank or t.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3048 CHARGE invalid on SENDEDI command.

Explanation: You specified an invalid value for the CHARGE parameter in the SENDEDI 
command. CHARGE must be a numeric character from 1 to 6.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3050 ACK invalid on SENDEDI command.

Explanation: You specified an invalid value for the ACK parameter in the SENDEDI command. 
ACK must be blank, a, b, c, d, e, f, or r.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3072 VERIFY invalid on SENDEDI command.

Explanation: You specified an invalid value for the VERIFY parameter in the SENDEDI 
command. VERIFY must be y, c, f, g, or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3074 RETAIN invalid on SENDEDI command.

Explanation: You specified an invalid value for the RETAIN parameter in the SENDEDI 
command. RETAIN must be a numeric value from 0 to 180.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3094 RECFM invalid on SENDEDI command.

Explanation: You specified an invalid value for the RECFM parameter in the SENDEDI 
command. RECFM must be f or v.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.
356



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
3095 LRECL invalid on SENDEDI command.

Explanation: You specified an invalid value for the LRECL parameter in the SENDEDI 
command. LRECL must be 1 to 5 numeric characters, between 1 and 65535.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3098 COMPRESS invalid on SENDEDI command.

Explanation: You specified an invalid value for the COMPRESS parameter in the SENDEDI 
command. COMPRESS must be y, t, or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3099 SELECTRCV invalid on SENDEDI command.

Explanation: You specified an invalid value for the SELECTRCV parameter in the SENDEDI 
command. SELECTRCV must be f, n, or blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which SENDEDI command produced the error. Correct the 
SENDEDI command in the message command file, BASEIN.MSG, and retry the program.

3204 Multiple sources on RECEIVE command.

Explanation: You specified multiple sources in the RECEIVE command. You can specify only 
one source.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3206 Incomplete source specified on RECEIVE command.

Explanation: You specified an incomplete source for the RECEIVE command. If you specify a 
source, you must use ACCOUNT and USERID; SYSID, ACCOUNT and USERID; ALIAS and 
ALIASNAME; or LISTNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3214 ALIAS invalid on RECEIVE command.

Explanation: You specified an invalid value for the ALIAS parameter in the RECEIVE 
command. The first character of the ALIAS parameter is the destination table type, and it must be 
blank, g, o, or p. The last three characters of the ALIAS parameter are the destination table ID, 
and they must be 1 to 3 alphanumeric characters. If the first character is blank, the last three 
characters of the ALIAS parameter must also be blank.
357



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3230 No FILEID specified on RECEIVE command.

Explanation: You must specify a FILEID in the RECEIVE command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3234 FILEID invalid on RECEIVE command.

Explanation: You specified an invalid value for the FILEID parameter on the RECEIVE 
command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3236 FORMAT invalid on RECEIVE command.

Explanation: You specified an invalid value for the FORMAT parameter in the RECEIVE 
command. FORMAT must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3240 MULTFILES invalid on RECEIVE command.

Explanation: You specified an invalid value for the MULTFILES parameter on the RECEIVE 
command. MULTFILES must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3242 ALLFILES invalid on RECEIVE command.

Explanation: You specified an invalid value for the ALLFILES parameter in the RECEIVE 
command. ALLFILES must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3246 EDIOPT invalid on RECEIVE command.

Explanation: You specified an invalid value for the EDIOPT parameter in the RECEIVE 
command. EDIOPT must be y or n.
358



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3248 ORIGFILE invalid on RECEIVE command.

Explanation: You specified an invalid value for the ORIGFILE parameter on the RECEIVE 
command. ORIGFILE must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3250 PROCESSLEN invalid on RECEIVE command.

Explanation: You specified an invalid value for the PROCESSLEN parameter on the RECEIVE 
command. PROCESSLEN must be c, i, or r.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3252 RECORDSIZE invalid on RECEIVE command.

Explanation: You specified an invalid value for the RECORDSIZE parameter on the RECEIVE 
command. RECORDSIZE must be a numeric value from 1 to 999.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3254 REMOVEOF invalid on RECEIVE command.

Explanation: You specified an invalid value for the REMOVEOF parameter on the RECEIVE 
command. REMOVEOF must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3256 REQUEUED invalid on RECEIVE command.

Explanation: You specified an invalid value for the REQUEUED parameter in the RECEIVE 
command. REQUEUED must be y or n. If you specify a source, REQUEUED cannot be y.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3258 AUTOEDI invalid on RECEIVE command.

Explanation: You specified an invalid value for the AUTOEDI parameter in the RECEIVE 
command. AUTOEDI must be y or n.
359



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3266 MSGKEY invalid on RECEIVE command.

Explanation: You specified an invalid value for the MSGKEY parameter in the RECEIVE 
command. MSGKEY must be 20 hex characters.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the RECEIVE 
command in the message command file, BASEIN.MSG, and retry the program.

3270 STARTDATE invalid on RECEIVE command.

Explanation: You specified an invalid value for the STARTDATE parameter in the RECEIVE 
command. The format must be YYMMDD, where YY is the last two digits of the year, MM is 
the two-digit month, and DD is the two digit day or YYYYMMDD, where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3271 STARTTIME invalid on RECEIVE command.

Explanation: You specified an invalid value for the STARTTIME parameter in the RECEIVE 
command. The format must be HHMMSS, where HH is the two-digit hour, MM is the two-digit 
minutes, and SS is the two-digit seconds.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3272 ENDDATE invalid on RECEIVE command.

Explanation: You specified an invalid value for the ENDDATE parameter in the RECEIVE 
command. The format must be YYMMDD, where YY is the last two-digits of the year, MM is 
the two-digit month, and DD is the two-digit day or YYYYMMDD, where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3273 ENDTIME invalid on RECEIVE command.

Explanation: You specified an invalid value for the ENDTTIME parameter in the RECEIVE 
command. The format must be HHMMSS, where HH is the two-digit hour, MM is the two-digit 
minutes, and SS is the two-digit seconds.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.
360



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
3274 TIMEZONE invalid on RECEIVE command.

Explanation: You specified an invalid value for the TIMEZONE parameter in the RECEIVE 
command. TIMEZONE must be g or l.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3275 END DATE/TIME is before START DATE/TIME.

Explanation: You specified an end date and time in the RECEIVE command that is before the 
start date and time. If you specified either date field with a two-digit year, a sliding window 
technique was used to decide the century indicator which is used when comparing the start and 
end dates.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program. The 
sliding window technique is described in the readme file.

3284 NONEDIONLY invalid on RECEIVE command.

Explanation: You specified an invalid value for the NONEDIONLY parameter in the RECEIVE 
command. NONEDIONLY must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3285 WAIT invalid on RECEIVE command.

Explanation: You specified an invalid value for the WAIT parameter on the RECEIVE 
command. WAIT must be four numeric characters. The first two represent minutes from 02 to 05, 
and the last two represent seconds from 00 to 59. The total time specified cannot be more than 5 
minutes. WAIT is not valid unless COMMTYPE is A, T, or C on the TRANSMIT command in 
BASEIN.PRO.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVE command produced the error. Correct the 
RECEIVE command in the message command file, BASEIN.MSG, and retry the program.

3404 Multiple sources on RECEIVEEDI command.

Explanation: You specified multiple sources in the RECEIVEEDI command. You can specify 
only one source.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.
361



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
3406 Incomplete source on RECEIVEEDI command.

Explanation: You specified an incomplete source in the RECEIVEEDI command. If you specify 
a source, you must use ACCOUNT and USERID; SYSID, ACCOUNT and USERID; ALIAS 
and ALIASNAME; or LISTNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3414 ALIAS invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the ALIAS parameter in the RECEIVEEDI 
command. The first character of the ALIAS parameter is the destination table type, and it must be 
blank, g, o, or p. The last three characters of the ALIAS parameter are the destination table ID, 
and they must be one to three alphanumeric characters. If the first character is blank, then the last 
three characters of the ALIAS must be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3430 No FILEID specified on RECEIVEEDI command.

Explanation: You must specify a FILEID parameter in the RECEIVEEDI command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3434 FILEID invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the FILEID parameter on the RECEIVEEDI 
command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3440 MULTFILES invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the MULTFILES parameter on the 
RECEIVEEDI command. MULTFILES must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3442 ALLFILES invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the ALLFILES parameter in the RECEIVEEDI 
command. ALLFILES must be y or n.
362



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3446 EDIOPT invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the EDIOPT parameter in the RECEIVEEDI 
command. EDIOPT must be y, n, or f.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3448 ORIGFILE invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the ORIGFILE parameter on the RECEIVEEDI 
command. ORIGFILE must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3452 RECORDSIZE invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the RECORDSIZE parameter on the 
RECEIVEEDI command. RECORDSIZE must be a value from 000 to 999.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3456 REQUEUED invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the REQUEUED parameter in the RECEIVEEDI 
command. REQUEUED must be y or n. If you specify a source, REQUEUED cannot be y.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3466 MSGKEY invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the MSGKEY parameter in the RECEIVEEDI 
command. MSGKEY must be 20 hex characters.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the message 
command file, BASEIN.MSG, and retry the program.

3470 STARTDATE invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the STARTDATE parameter in the 
RECEIVEEDI command. The format must be YYMMDD, where YY is the last two digits of the 
year, MM is the two-digit month, and DD is the two digit day or YYYYMMDD, where YYYY is 
a four-digit year.
363



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3471 STARTTIME invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the STARTTIME parameter in the RECEIVEEDI 
command. The format must be HHMMSS, where HH is the two-digit hour, MM is the two-digit 
minutes, and SS is the two-digit seconds.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3472 ENDDATE invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the ENDDATE parameter in the RECEIVEEDI 
command. The format must be YYMMDD, where YY is the last two digits of the year, MM is 
the two-digit month, and DD is the two-digit day or YYYYMMDD, where YYYY is a four-digit 
year.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3473 ENDTIME invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the ENDTTIME parameter in the RECEIVEEDI 
command. The format must be HHMMSS, where HH is the two-digit hour, MM is the two-digit 
minutes, and SS is the two-digit seconds.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3474 TIMEZONE invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the TIMEZONE parameter in the RECEIVEEDI 
command. TIMEZONE must be either g or l.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3475 END DATE/TIME is before START DATE/TIME.

Explanation: You specified an end date and time in the RECEIVEEDI command that is before 
the start date and time. If you specified either date field with a two-digit year, a sliding window 
technique was used to decide the century indicator which is used when comparing the start and 
end dates.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program. The 
sliding window technique is described in the readme file.
364



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
3484 EDIONLY invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the EDIONLY parameter in the RECEIVEEDI 
command. EDIONLY must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3485 WAIT invalid on RECEIVEEDI command.

Explanation: You specified an invalid value for the WAIT parameter on the RECEIVEEDI 
command. WAIT must be four numeric characters. The first two represent minutes from 02 to 05, 
and the last two represent seconds from 00 to 59. The total time specified cannot be more than 5 
minutes. WAIT is not valid unless COMMTYPE is A, T, or C on the TRANSMIT command in 
BASEIN.PRO.

User Response: Check the message response file, baseout.msg, or response work file, 
tempout.msg, to determine which RECEIVEEDI command produced the error. Correct the 
RECEIVEEDI command in the message command file BASEIN.MSG, and retry the program.

3600 Requested a session start when already in session.

Explanation: You requested that Expedite Base do a session start when it was already in an 
Information Exchange session. If you use multiple START commands in a command file, you 
must end the previous Information Exchange session before you start the next one.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the message 
command file, BASEIN.MSG, and retry the program.

3610 START command invalid with automatic session start.

Explanation: You specified the START command in the command file, but your profile, 
BASEIN.PRO, indicates that the system should start the session automatically. If the session 
starts automatically, the START command is invalid.

User Response: Specify ’n’ for AUTOSTART on the TRANSMIT command in the profile 
command file, BASEIN.PRO, if you do not want the session started automatically. Otherwise, 
remove the START command from the message command file, BASEIN.MSG, and retry the 
program.

3620 END command invalid with automatic session end.

Explanation: You specified the END command in the command file, but your profile indicates 
that the session should end automatically. If the system ends the session automatically, the END 
command is invalid.

User Response: Specify ’n’ for AUTOEND on the TRANSMIT command in the profile 
command file, BASEIN.PRO, if you do not want the session ended automatically. Otherwise, 
remove the END command from the message command file BASEIN.MSG, and retry the 
program.
365



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
3630 Session not started before first command.

Explanation: You specified a command in the message command file BASEIN.MSG, other 
than START, but were not currently in session.

User Response: Add a START command to the message command file, BASEIN.MSG, or 
specify ’y’ for AUTOSTART on the TRANSMIT command in the profile command file, 
BASEIN.PRO, and retry the program.

3640 No END command or automatic end for session.

Explanation: If you specify ’n’ for AUTOEND on the TRANSMIT command, you must specify 
an END command in the command file.

User Response: Add an END command in the message command file, BASEIN.MSG, or 
specify ’y’ for AUTOEND on the TRANSMIT command in the profile command file, 
BASEIN.PRO. Retry the program.

3860 CDH invalid on QUERY command.

Explanation: You specified an invalid value for the CDH parameter in the QUERY command. 
CDH must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which QUERY command produced the error. Correct the 
QUERY command in the message command file, BASEIN.MSG, and retry the program.

4060 Missing ARCHIVEID on ARCHIVEMOVE command.

Explanation: You did not specify an ARCHIVEID value on the ARCHIVEMOVE command. 
This is a required parameter.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which ARCHIVEMOVE command produced the error. Correct 
the ARCHIVEMOVE command in the message command file BASEIN.MSG, and retry the 
program.

4110 MSGKEY missing on PURGE command.

Explanation: You did not specify the MSGKEY parameter on the PURGE command. This is a 
required parameter.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PURGE command produced the error. Correct the PURGE 
command in the message command file, BASEIN.MSG, and retry the program. The message key 
can be found on the AVAILABLE record in response to a QUERY command.

4502 Missing DESTINATION on DEFINEALIAS command.

Explanation: You did not specify a destination on the DEFINEALIAS command. A desti-
nation consists of an ACCOUNT and USERID; SYSID, ACCOUNT, and USERID; or ALIAS 
and ALIASNAME.
366



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4514 Invalid table type on DEFINEALIAS command.

Explanation: You specified an invalid value for an ALIAS parameter in the DEFINEALIAS 
command. The first character of the ALIAS parameter is the destination table type, and it must be 
blank, g, o, or p. The last three characters of the ALIAS parameter are the destination table ID, 
and they must be 1 to 3 alphanumeric characters. If the first character is blank, then the last three 
characters of the ALIAS must be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4532 Invalid table name on DEFINEALIAS command.

Explanation: The ALIASTABLE parameter in the DEFINEALIAS command is missing, 
blank, or invalid. An ALIASTABLE name must be specified. The first character of the 
ALIASTABLE parameter is the destination table type, and it must be g, o, or p. The last three 
characters of the ALIAS parameter are the destination table ID, and they must be 1 to 3 alphanu-
meric characters.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4562 FUNCTION invalid on DEFINEALIAS command.

Explanation: The value for the FUNCTION parameter in the DEFINEALIAS command is 
invalid. The FUNCTION parameter value must be a, c, d, e, or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4564 Invalid use of FUNCTION parameter on DEFINEALIAS command.

Explanation: Either entries were specified in the DEFINEALIAS command with ’E’ for 
FUNCTION, or no entries were specified for one of the other FUNCTION values.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4566 AUTHORITY invalid on DEFINEALIAS command.

Explanation: Use of the AUTHORITY parameter in the DEFINEALIAS command is invalid 
or you specified an invalid value for the AUTHORITY parameter. You may use the 
AUTHORITY parameter only if you are defining a new alias table, where FUNCTION is set to 
’N’. Valid values for the AUTHORITY parameter are p, a, or g. If you are defining a private alias 
table or an organizational alias table, the first character of the alias table name is P or O, then you 
cannot specify ’G’ for AUTHORITY.
367



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4598 Invalid parameter duplication on DEFINEALIAS command.

Explanation: An ALIASTABLE, FUNCTION, or AUTHORITY parameter is duplicated. 
These parameters can be specified only once in each DEFINEALIAS command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4599 Incomplete destination on DEFINEALIAS command.

Explanation: A DEFINEALIAS command ended before a destination was completed, or a 
new type of destination started before the previous destination entry was completed. This is 
usually caused by a missing parameter somewhere in a destination of a DEFINEALIAS 
command. Destination entries are made up of either an ACCOUNT and USERID; SYSID, 
ACCOUNT, and USERID; or an ALIAS and ALIASNAME. Therefore, you must specify each 
destination component next to its counterpart. For example, an ACCOUNT parameter should be 
entered next to a USERID parameter. If you specify a SYSID parameter, you must specify it next 
to its associated ACCOUNT and USERID parameters. An ALIAS parameter must have an 
associated ALIASNAME parameter. A SYSID next to an ALIASNAME is invalid.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which DEFINEALIAS command produced the error. Correct the 
DEFINEALIAS command in the message command file BASEIN.MSG, and retry the program.

4630 FILEID missing on PUTMEMBER command.

Explanation: You must specify a FILEID in the PUTMEMBER command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4634 FILEID invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the FILEID parameter on the PUTMEMBER 
command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4636 FORMAT invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the FORMAT parameter in the PUTMEMBER 
command. FORMAT must be y or n. You cannot specify ’Y’ for FORMAT with ’B’ for DATATYPE 
or ’Y’ for DELIMITED.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.
368



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
4650 ACK invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the ACK parameter in the PUTMEMBER 
command. ACK must be blank or d.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4672 VERIFY invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the VERIFY parameter in the PUTMEMBER 
command. VERIFY must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4676 DATATYPE invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the DATATYPE parameter in the PUTMEMBER 
command. DATATYPE must be a or b.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4678 DELIMIT invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the DELIMITED parameter in the 
PUTMEMBER command. DELIMITED must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4686 MEMBER missing on PUTMEMBER command.

Explanation: You must specify a MEMBER name on the PUTMEMBER command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4688 LIBRARY missing on PUTMEMBER command.

Explanation: You must specify a LIBRARY name on the PUTMEMBER command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.
369



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
4694 REPLACE invalid on PUTMEMBER command.

Explanation: You specified an invalid value for the REPLACE parameter in the PUTMEMBER 
command. REPLACE must be y or n.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which PUTMEMBER command produced the error. Correct the 
PUTMEMBER command in the message command file BASEIN.MSG, and retry the program.

4704 Multiple destinations on GETMEMBER command.

Explanation: You specified multiple destinations in a GETMEMBER command. You can specify 
only one destination.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4706 Partial destinations on GETMEMBER command.

Explanation: The destination must be ALIAS and ALIASNAME; ACCOUNT and USERID; 
SYSID, ACCOUNT and USERID; or LISTNAME.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4714 Invalid ALIAS on GETMEMBER command.

Explanation: You specified an invalid value for an ALIAS parameter in the GETMEMBER 
command. The first character of the ALIAS parameter is the destination table type, and it must be 
blank, g, o, or p. The last three characters of the ALIAS parameter are the destination table ID, 
and they must be 1 to 3 alphanumeric characters. If the first character is blank, the last three 
characters of the ALIAS parameter must also be blank.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4748 CHARGE invalid on GETMEMBER command.

Explanation: You specified an invalid value for the CHARGE parameter in the GETMEMBER 
command. CHARGE must be one of the following:  1, 3, 5, or 6.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4750 ACK invalid on GETMEMBER command.

Explanation: You specified an invalid value for the ACK parameter in the GETMEMBER 
command. ACK must be blank, a, b, c, d, e, f, or r.
370



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4774 RETAIN invalid on GETMEMBER command.

Explanation: You specified an invalid value for the RETAIN parameter in the GETMEMBER 
command. RETAIN must be a numeric value from 0 to 180.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4786 MEMBER name missing on GETMEMBER command.

Explanation: You must specify a MEMBER name on the GETMEMBER command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4788 LIBRARY name missing on GETMEMBER command.

Explanation: You must specify a LIBRARY name on the GETMEMBER command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which GETMEMBER command produced the error. Correct the 
GETMEMBER command in the message command file BASEIN.MSG, and retry the program.

4866 AUTHORITY invalid on LISTLIBRARIES command.

Explanation: You specified an invalid value for the AUTHORITY parameter in the LISTLI-
BRARIES command. AUTHORITY must be r or w.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the message 
command file, BASEIN.MSG, and try again.

4868 SELECTION invalid on LISTLIBRARIES command.

Explanation: You specified an invalid value for the SELECTION in the LISTLIBRARIES 
command. SELECTION must be a or c.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which command produced the error. Correct the message 
command file, BASEIN.MSG, and try again.

4988 LIBRARY name missing on LISTMEMBERS command.

Explanation: You must specify a LIBRARY name on the LISTMEMBERS command.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which LISTMEMBERS command produced the error. Correct the 
LISTMEMBERS command in the message command file BASEIN.MSG, and retry the command.
371



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
Profile command file syntax errors 
This section describes the return codes for profile command file syntax errors.

5018 INACCOUNT missing on IDENTIFY command.

Explanation: You must specify a network account in your profile.

User Response: Specify the account using the INACCOUNT parameter in the IDENTIFY 
command in the profile command file, BASEIN.PRO. Retry the program.

5020 INUSERID missing on IDENTIFY command.

Explanation: You must specify a network user ID in your profile.

User Response: Specify the user ID using the INUSERID parameter in the IDENTIFY command 
in the profile command file, BASEIN.PRO. Retry the program.

5022 INPASSWORD missing on IDENTIFY command.

Explanation: You must specify a network password in your profile.

User Response: Specify the password using the INPASSWORD parameter in the IDENTIFY 
command in the profile command file, BASEIN.PRO. Retry the program.

5024 IEACCOUNT missing on IDENTIFY command.

Explanation: You must specify an Information Exchange account in your profile when 
Expedite Base starts the session automatically.

User Response: Specify the account using the IEACCOUNT parameter in the IDENTIFY 
command in the profile command file, BASEIN.PRO. Retry the program.

5026 IEUSERID missing on IDENTIFY command.

Explanation: You must specify an Information Exchange user ID in your profile when 
Expedite Base starts the session automatically.

User Response: Specify the user ID using the IEUSERID parameter in the IDENTIFY command 
in the profile command file, BASEIN.PRO. Retry the program.

5028 IEPASSWORD missing on IDENTIFY command.

Explanation: You must specify an Information Exchange password in your profile when 
Expedite Base starts the session automatically.

User Response: Specify the password using the IEPASSWORD parameter in the IDENTIFY 
command in the profile command file, BASEIN.PRO. Retry the program.

5072 TIMEZONE invalid on IDENTIFY command.

Explanation: You specified an invalid value for the TIMEZONE parameter in the IDENTIFY 
command. TIMEZONE must be 1 to 5 alphanumeric characters. Valid values are ast, ahd, ahs, 
bst, cdt, cst, ead, edt, emt, est, gmt, jst, mdt, mst, pdt, pst, wed, wes, ydt, and yst. You can also 
specify the time zone as hours and minutes east or west of Greenwich Mean Time, for example, 
w0400 or e0400.
372



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Correct the TIMEZONE parameter in the IDENTIFY command in the profile 
command file, BASEIN.PRO. Retry the program.

5074 ENCRYPT invalid on IDENTIFY command.

Explanation: You specified an invalid value for the ENCRYPT parameter in the IDENTIFY 
command. ENCRYPT must be y or n.

User Response: Correct the ENCRYPT parameter in the IDENTIFY command in the profile 
command file, BASEIN.PRO. Retry the program.

5266 MANUALDIAL invalid on DIAL command.

Explanation: You specified an invalid value for the MANUALDIAL parameter on the DIAL 
command. MANUALDIAL must be y or n.

User Response: Correct the MANUALDIAL parameter in the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5268 PORTIRQ invalid or missing on DIAL command.

Explanation: You specified an invalid value for the PORTIRQ parameter on the DIAL 
command. PORTIRQ must be one numeric character from 0 to 7. If you specify a PORTADDR, 
you must specify a PORTIRQ.

User Response: Correct the PORTIRQ parameter in the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5270 PORTADDR invalid or missing on DIAL command.

Explanation: You specified an invalid value for the PORTADDR parameter on the DIAL 
command. PORTADDR must be four hexadecimal characters. If you specify a PORTIRQ, you 
must specify a PORTADDR.

User Response: Correct the PORTADDR parameter on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5272 No phone number found in profile, or DIALCOUNT is 0.

Explanation: You are attempting to use asynchronous communication and you either didn’t 
specify a PHONEn parameter on the DIAL command or all DIALCOUNT parameters are set to 
0.

User Response: Specify a phone number on the DIAL command in the the profile command 
file, BASEIN.PRO, and verify that at least one phone number has a DIALCOUNT greater than 0. 
Retry the program.

5274 DIALCOUNTN invalid on DIAL command.

Explanation: You specified an invalid DIALCOUNTn parameter on the DIAL command. 
DIALCOUNTn must be a single numeric character from from 0 to 9.

User Response: Correct the DIALCOUNTn parameter on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.
373



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
5276 BAUDRATEN invalid on DIAL command.

Explanation: You specified an invalid BAUDRATEn parameter on the DIAL command. 
BAUDRATEn must be 300, 1200, 2400, 4800, 9600, 19200, 38400, 56000, or 57600.

User Response: Correct the BAUDRATEn parameter on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5278 ACCESS invalid on DIAL command.

Explanation: You specified an invalid ACCESS parameter on the DIAL command. ACCESS 
must be d or s.

User Response: Correct the ACCESS parameter on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5281 PORT invalid on DIAL command.

Explanation: You specified an invalid PORT parameter on the DIAL command. PORT must 
be one numeric character from 1 to 4.

User Response: Correct the PORT parameter on the DIAL command in the profile command 
file, BASEIN.PRO. Retry the program.

5284 CYCLE invalid on DIAL command.

Explanation: You specified an invalid CYCLE parameter on the DIAL or LANDIAL 
command. CYCLE must be one numeric character from 0 to 9.

User Response: Correct the CYCLE parameter on the DIAL command in the profile command 
file, BASEIN.PRO. Retry the program.

5286 WAIT invalid on DIAL command.

Explanation: You specified an invalid WAIT parameter on the DIAL command. The WAIT 
parameter has the format HHMM where HH is number of hours and MM is number of minutes. 
You must specify four numeric characters from 0000 to 9959.

User Response: Correct the WAIT parameter on the DIAL command in the profile command 
file, BASEIN.PRO. Retry the program.

5288 PHONETYPE invalid on DIAL command.

Explanation: You specified an invalid PHONETYPE parameter on the DIAL command. 
PHONETYPE must be t or p.

User Response: Correct the PHONETYPE parameter on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5292 Modem script conflict, MODEMTYPE and INITSCR/RESETSCR specified.

Explanation: You have indicated the use of both old style scripts and new style scripts. You 
have specified a MODEMTYPE parameter on the DIAL command which indicates the use of old 
style modem scripts. In addition, you have specified INITSCR or RESETSCR. If you want to use 
old style scripts, you cannot also use initialization or reset scripts.
374



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: If you wish to use the old style modem scripts, do not specify INITSCR or 
RESETSCR. If you wish to use initialization or reset scripts, specify the MODEMTYPE 
parameter with a blank value on the DIAL command in the profile command file, BASEIN.PRO. 
Retry the program.

5293 Modem script conflict, MODEMTYPE and CNNCTSCR/DISCNNCTSCR 
specified.

Explanation: You have indicated the use of both old style scripts and new style scripts. You 
have specified a MODEMTYPE parameter on the DIAL command, which indicates the use of 
old style modem scripts. In addition, you have specified CNNCTSCR or DISCNNCTSCR. If 
you want to use old style scripts, you cannot use CNNCTSCR or DISCNNCTSCR.

User Response: If you wish to use the old style modem scripts, do not specify CNNCTSCR or 
DISCNNCTSCR. If you wish to use CNNCTSCR and DISCNNCTSCR, specify the 
MODEMTYPE parameter with a blank value on the DIAL command in the profile command 
file, BASEIN.PRO. Retry the program.

5294 Modem script conflict, new scripts indicated, ACCESS specified.

Explanation: You have indicated the use of both old style scripts and new style scripts. You 
have specified an ACCESSn parameter on the DIAL command, which indicates the use of old 
style modem scripts. In addition, you have specified one or more of CNNCTSCR, 
DISCNNCTSCR, INITSCR, or RESETSCR.

User Response: If you wish to use the old style modem scripts, do not specify any of 
CNNCTSCR, DISCNNCTSCR, INITSCR, or RESETSCR. If you wish to use these scripts, 
specify the ACCESS parameter with a blank value on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5295 Modem script conflict, MODEMTYPE not blank and no old scripts.

Explanation: You have indicated the use of old style modem scripts by using the 
MODEMTYPE parameter on the DIAL command. However, Expedite Base could not find the 
associated modem script file.

User Response: Verify that the old style modem script file you wish to use exists in the current 
directory or the directory specified in the IEPATH parameter on the SESSION command. The old 
style modem script filenames have the format xCNNCT.FIL and xDCNNCT.FIL where x is the 
character specified in the MODEMTYPE parameter. Retry the program.

5296 DCLVERSION invalid on DIAL command.

Explanation: You specified an invalid DCLVERSION parameter on the DIAL command. 
DCLVERSION must be one numeric character, either a 1 to use old DCL block size, or a 2 to use 
the new DCL block size.

User Response: Correct the DCLVERSION parameter on the DIAL command in the profile 
command file, BASEIN.PRO. Retry the program.

5472 EXITKEY invalid on SESSION command.

Explanation: You specified an invalid EXITKEY parameter on the SESSION command. 
EXITKEY must be a numeric character from 2 to 10.
375



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Correct the EXIT parameter on the SESSION command in the profile 
command file, BASEIN.PRO. Retry the program.

5474 PICTURE invalid on SESSION command.

Explanation: You specified an invalid PICTURE parameter on the SESSION command. 
PICTURE must be y or n.

User Response: Correct the PICTURE parameter on the SESSION command in the profile 
command file, BASEIN.PRO. Retry the program.

5476 STATUS invalid on SESSION command.

Explanation: You specified an invalid value for the STATUS parameter on the SESSION 
command. STATUS must be y or n.

User Response: Correct the STATUS parameter in the SESSION command in the profile 
command file, BASEIN.PRO. Retry the program.

5478 IEPATH invalid on SESSION command.

Explanation: You specified an invalid IEPATH parameter on the SESSION command. 
IEPATH must specify a valid path up to 42 characters in length.

User Response: Correct the IEPATH parameter on the SESSION command in the profile 
command file, BASEIN.PRO. Retry the program.

5480 OVERWRITE invalid on SESSION command.

Explanation: You specified an invalid value for the OVERWRITE parameter on the SESSION 
command. OVERWRITE must be y or n.

User Response: Correct the OVERWRITE parameter in the SESSION command in the profile 
command file, BASEIN.PRO. Retry the program.

5672 CNNCT invalid on TRACE command.

Explanation: You specified an invalid value for the CNNCT parameter the TRACE command. 
CNNCT must be y or n.

User Response: Correct the CNNCT parameter in the TRACE command in the profile 
command file, BASEIN.PRO. Retry the program.

5674 DISPLAY invalid on TRACE command.

Explanation: You specified an invalid value for the DISPLAY parameter in the TRACE 
command. DISPLAY must be y or n.

User Response: Correct the DISPLAY parameter in the TRACE command in the profile 
command file, BASEIN.PRO. Retry the program.

5676 MODEM invalid on TRACE command.

Explanation: You specified an invalid value for the MODEM parameter in the TRACE 
command. MODEM must be y or n.
376



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Correct the MODEM parameter in the TRACE command in the profile 
command file, BASEIN.PRO. Retry the program.

5678 PROTOCOL invalid on TRACE command.

Explanation: You specified an invalid value for the PROTOCOL parameter in the TRACE 
command. PROTOCOL must be y or n.

User Response: Correct the PROTOCOL parameter in the TRACE command in the profile 
command file, BASEIN.PRO. Retry the program.

5680 LINK invalid on TRACE command.

Explanation: You specified an invalid value for the LINK parameter in the TRACE command. 
LINK must be y or n.

User Response: Correct the LINK parameter in the TRACE command in the profile command 
file, BASEIN.PRO. Retry the program.

5682 BASE invalid on TRACE command.

Explanation: You specified an invalid value for the BASE parameter in the TRACE 
command. BASE must be y or n.

User Response: Correct the BASE parameter in the TRACE command in the profile command 
file, BASEIN.PRO. Retry the program.

5684 IOFILE invalid on TRACE command.

Explanation: You specified an invalid value for the IOFILE parameter in the TRACE 
command. IOFILE must be y or n.

User Response: Correct the IOFILE parameter in the TRACE command in the profile 
command file, BASEIN.PRO. Retry the program.

5872 AUTOSTART invalid on TRANSMIT command.

Explanation: You specified an invalid value for the AUTOSTART parameter in the TRANSMIT 
command. AUTOSTART must be y or n.

User Response: Correct the AUTOSTART parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5874 RECONNECT invalid on TRANSMIT command.

Explanation: You specified an invalid value for the RECONNECT parameter in the TRANSMIT 
command. RECONNECT must be one numeric character from 0 to 9.

User Response: Correct the RECONNECT parameter in the TRANSMIT command in the 
profile command file, BASEIN.PRO. Retry the program.

5876 AUTOEND invalid on TRANSMIT command.

Explanation: You specified an invalid value for the AUTOEND parameter in the TRANSMIT 
command. AUTOEND must be y or n.
377



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Correct the AUTOEND parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5878 COMMITDATA invalid on TRANSMIT command.

Explanation: You specified an invalid value for the COMMITDATA parameter in the 
TRANSMIT command. COMMITDATA must be a numeric value from 1000 to 9999999 and must 
be greater than or equal to the MSGSIZE parameter value.

User Response: Correct the COMMITDATA parameter in the TRANSMIT command in the 
profile command file, BASEIN.PRO. Retry the program.

5880 BLOCKSIZE invalid on TRANSMIT command.

Explanation: You specified an invalid value for the BLOCKSIZE parameter in the TRANSMIT 
command. BLOCKSIZE must be between 256 and 3500.

User Response: Correct the BLOCKSIZE parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5882 COMMTYPE invalid on TRANSMIT command.

Explanation: You specified an invalid value for the COMMTYPE parameter in the TRANSMIT 
command. COMMTYPE must be A, C, or T.

User Response: Correct the COMMTYPE parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5884 MAXMSGS invalid on TRANSMIT command.

Explanation: You specified an invalid value for the MAXMSGS parameter in the TRANSMIT 
command. MAXMSGS must be a numeric value from 1 to 10.

User Response: Correct the MAXMSGS parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5886 DELAYTIME invalid on TRANSMIT command.

Explanation: You specified an invalid value for the DELAYTIME parameter in the TRANSMIT 
command. DELAYTIME must be 6 numeric characters with the format HHMMSS where HH is 
hours, MM is minutes, SS is seconds.

User Response: Correct the DELAYTIME parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5888 DELAYDATE invalid on TRANSMIT command.

Explanation: You specified an invalid value for the DELAYDATE parameter in the TRANSMIT 
command. DELAYDATE must be 6 numeric characters with the format YYMMDD where YY is 
year, MM is month, DD is day.

User Response: Correct the DELAYDATE parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.
378



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
5892 RECOVERY invalid on TRANSMIT COMMAND

Explanation: You specified an invalid value for the RECOVERY parameter in the TRANSMIT 
command. RECOVERY must be c, f, u, or s.

User Response: Correct the RECOVERY parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

5894 Session-level recovery not valid with session in progress.

Explanation: You specified session-level recovery, but the session file indicates that a check-
point session is in progress.

User Response: Continue the present session using checkpoint-level recovery. If you want to 
use session-level recovery without completing the present session, either specify the RESET 
command line parameter with the IEBASE command, or remove the session file, SESSION.FIL.

5896 MSGSIZE invalid on TRANSMIT command.

Explanation: You specified an invalid value for the MSGSIZE parameter in the TRANSMIT 
command. MSGSIZE must be a numeric value from 1000 to 99999.

User Response: Correct the MSGSIZE parameter in the TRANSMIT command in the profile 
command file, BASEIN.PRO. Retry the program.

6200 ENABLESSL invalid on SSL command.

Explanation: You specified an invalid value  in BASEIN.PRO for the ENABLESSL 
parameter in the SSL command.  ENABLESSL must be a y or n.

User Response: Correct the ENABLESSL parameter.  Retry the program.

6201 CIPHERSUITES invalid on SSL command.

Explanation: You specified an invalid value for the CIPHERSUITES parameter in the SSL 
command.  The value of CIPHERSUITES is a string consisting of 1 or more 2-character values.  
Valid characters are 0 through 9 or a through f. 

User Response: Correct the CIPHERSUITES parameter in the SSL command in the profile 
command file, INPRO.  Retry the program. Valid values for CIPHERSUITES are determined 
when System SSL is installed on your system and a default value is established.  You should 
never change this value unless requested to do so by the Global Services personnel.

6202 SSLVERSION invalid on SSL command.

Explanation: You specified an invalid value for the SSLVERSION parameter in the SSL 
command.  Valid values for SSLVERSION are 3031, 30 or 31.

User Response: Correct the SSLVERSION parameter in the SSL command in the profile 
command file, INPRO.  Retry the program.  3031 is the default value for this parameter.  You 
should never change this value unless requested to do so by the Global Services personnel.

CAUTION: If you reset the session using the RESET command line parameter you 
will no longer be able to continue the previous session. Failure to modify the message 
command file BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
379



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
06203 SSL only valid with TCP/IP communication types.

Explanation: You specified Y for the ENABLESSL parameter, but the communication type is 
not TCP/IP.  Set your communication type to TCP/IP leased line or dial if available and try the 
program again.

User Response: Set your communication type to TCP/IP leased line or dial and try the 
program again.
380



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
Network errors 
This section describes the return codes for network errors.

11801 Your modem did not respond to any commands issued by Expedite Base.

Explanation: In attempting to connect to the network, Expedite Base issued commands to 
your modem but did not receive any response.

User Response: Use the following checklist to identify the problem.

• Check to see that the baud rate and the communications port specified in the profile 
command file, BASEIN.PRO, match that of your modem.

• If using an external modem, check to see that the modem is turned on and the modem 
cable is securely connected.

• Check your modem manual to verify that the modem configuration is set to be Hayes-
compatible.

• If using an external modem, test with a different modem cable.

• You may find it helpful to use the modem setup program to help configure your modem. 
To run the modem setup program, type EXPSETUP at the DOS command prompt and 
follow the directions.

• Test with another modem.

11802 Expedite Base was unable to establish a successful phone connection.

Explanation: Your modem responded to commands issued by Expedite Base, but was unable 
to establish a successful telephone connection.

User Response: The modem command files that are included with Expedite Base expect to 
receive a response containing CONNECT, for example, CONNECT 2400, from the modem. If 
this connect response is not received from the modem, then the return code set in the modem 
command file is 12130, which signals Expedite Base to redial. If the redial count has reached the 
maximum specified by the DIALCOUNTn parameters and the CYCLE parameter on the DIAL 
commands, then Expedite Base will exit with a 11802 return code. Use the following checklist to 
identify the problem.

• If you heard the modem dial but DID NOT hear a dial tone:

- Make sure the phone cable is securely connected to the wall jack.
- Make sure the phone cable is securely connected to the line jack in the back of the 

modem.
- Verify that your phone line is active. You can do this by trying to dial out on this 

line with a standard telephone.

• If you heard the modem dial and DID hear a dial tone:

- try an alternate phone number.
- verify that your modem responds with a CONNECT xxxx message when a 

successful connection is made, where xxxx is the baud rate of the connection. You 
can verify this by looking at the file CNNCT.LOG.
381



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
• You may find it helpful to use the modem setup program to help configure your modem. 
To run the modem setup program, type EXPSETUP at the DOS command prompt and 
follow the directions.

• Test with another modem.

11803 Expedite Base was unable to log on to the network.

Explanation: Expedite Base established a successful telephone connection, but could not log 
on to the network.

User Response: Use the following checklist to identify the problem.

• Make sure the BAUDRATEN parameter in BASEIN.PRO is at least equal to the data 
rate of the connection. If the specified BAUDRATEN value is sufficient, check your 
modem initialization string, MODEMINIT parameter.

• Verify that the supported data rate for the phone number you are dialing is not less than 
the BAUDRATEN parameter specified in BASEIN.PRO.

• If your modem has an error-correcting protocol such as MNP, and you are using a 
network communications gateway for asynchronous dial, make sure the error-correcting 
protocol is enabled. You can use the MODEMINIT parameter of the DIAL command in 
the profile command file, BASEIN.PRO, to issue the modem commands necessary to 
enable MNP.

• You may find it helpful to use the modem setup program to help configure your modem. 
To run the modem setup program, type EXPSETUP at the DOS command prompt and 
follow the directions.

• Test with another modem.

11804 Mode set error received during logon process.

Explanation: While attempting to log on to the network, Expedite Base received a mode set 
error. 

User Response: Use the following checklist to identify the problem.

• Retry the transmission.

• Attempt to transmit using an alternate phone number.

• If you are dialing a network communications gateway, be sure you specify ’A’ for 
COMMTYPE on the TRANSMIT command in BASEIN.PRO.

• If the problem persists, contact the Customer Care Help Desk.

11811 Invalid request.

Explanation: There was an error attempting to log on to the network.

User Response: Contact the Customer Care Help Desk.
382



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
11821 Account number missing or invalid.

Explanation: The network did not recognize the INACCOUNT that you specified in your 
profile.

User Response: Correct the INACCOUNT parameter on the IDENTIFY command in 
BASEIN.PRO and retry the program. If the problem persists, contact the Customer Care Help 
Desk.

11822 Invalid project number.

Explanation: There was an error attempting to log on to the network.

User Response: Contact the Customer Care Help Desk.

11823 User ID missing or invalid.

Explanation: The network did not recognize the INUSERID that you specified in your profile.

User Response: Correct the INUSERID parameter on the IDENTIFY command in 
BASEIN.PRO and retry the program. If the problem persists, contact the Customer Care Help 
Desk.

11824 Password missing or invalid.

Explanation: The password specified in the INPASSWORD parameter is not correct.

User Response: Correct the INPASSWORD parameter of the IDENTIFY command in 
BASEIN.PRO and retry the program. If you just changed your password, be sure to update the 
IDENTIFY command in BASEIN.PRO to reflect the new password. Also, if you specify ’y’ for 
encrypt, make sure the password is encrypted properly.

11825 Unexpected error processing new password.

Explanation: Expedite Base encountered an unexpected error while processing the password.

User Response: Contact the Customer Care Help Desk.

11826 Product missing or invalid.

Explanation: The product specified by the PRODUCT parameter is not correct.

User Response: Correct the PRODUCT parameter of the IDENTIFY command in 
BASEIN.PRO and retry the program. If the problem persists, contact the Customer Care Help 
Desk.

11827 Verify password invalid.

Explanation: There was an error attempting to log on to the network.

User Response: Contact the Customer Care Help Desk.

11828 New/verify passwords not equal.

Explanation: There was an error attempting to log on to the network.
383



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Contact the Customer Care Help Desk.

11831 Profile not found.

Explanation: The network was not able to find a network profile for the INACCOUNT and 
INUSERID specified.

User Response: Make sure the INACCOUNT and INUSERID fields in BASEIN.PRO are 
correct and retry the program. If the problem persists, contact the Customer Care Help Desk.

11836 Product not on profile.

Explanation: The product specified by the PRODUCT parameter is not on your network 
profile.

User Response: Make sure the PRODUCT parameter of the IDENTIFY command in 
BASEIN.PRO is correct and retry the program. If the problem persists, contact the Customer 
Care Help Desk.

11841 User ID already logged on.

Explanation: There are too many session logons with the same user ID.

User Response: Make sure that you end at least one other session for this user ID. If the 
problem persists, contact the Customer Care Help Desk.

11842 User ID not logged on.

Explanation: There was an error attempting to log on to the network.

User Response: Contact the Customer Care Help Desk.

11851 User ID not defined to RACF.

Explanation: There was an error attempting to log on to the network.

User Response: Contact the Customer Care Help Desk.

11852 Password not authorized.

Explanation: The password specified in the INPASSWORD parameter is not correct.

User Response: Correct the INPASSWORD parameter of the IDENTIFY command in 
BASEIN.PRO and retry the program. If you just changed your password, be sure to update the 
IDENTIFY command in BASEIN.PRO to reflect the new password. Also, if you specified ’y’ for 
encrypt, make sure the password is encryptedproperly. If the problem persists, contact the 
Customer Care Help Desk.

11853 Password expired.

Explanation: Your INPASSWORD has expired and you must change it.

User Response: Enter a new password in the NINPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO. Retry the program. Be sure to update BASEIN.PRO once the 
password has been changed.
384



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
11854 New password invalid.

Explanation: The new password specified in the NINPASSWORD parameter is invalid. The 
password you specified may violate password rules or may be the same as one of your previous 
three passwords.

User Response: Enter a valid password in the NINPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO and retry the program. If you just changed your password, be sure to 
update the IDENTIFY command in BASEIN.PRO to reflect the new password. If you specify ’y’ 
for encrypt, make sure the password is encrypted properly. If the problem persists, contact the 
Customer Care Help Desk.

11855 User acess revoked.

Explanation: Your user ID access was revoked.

User Response: Contact the Customer Care Help Desk.

11856 Password must be extended.

Explanation: Your password must be extended but it does not contain any extended password 
characters. The following characters are valid extended password characters:  & ! : " . ? and left 
and right parentheses. At least one of these characters must be in your network password to make 
it extended.

User Response: Enter a valid password in the INPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO and retry the program.

11857 New password must be extended.

Explanation: Your new password must be extended, but it does not contain any extended 
password characters. The following characters are valid extended password characters:  & ! : " . ? 
and left and right parentheses. At least one of these characters must be in your network password 
to make it extended.

User Response: Enter a valid password in the NINPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO and retry the program.

11858 Dial device access authorization failed.

Explanation: Your user ID is not defined to have dial access to the network.

User Response: Contact the Customer Care Help Desk.

11859 Password contains an invalid character.

Explanation: You specified an invalid character in the INPASSWORD parameter. See “Using 
accounts, user IDs, and passwords” on page 2 for network password rules.

User Response: Enter a valid password in the INPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO and retry the program. If you specify ’y’ for encrypt, make sure the 
password is encrypted properly. If the problem persists, contact the Customer Care Help Desk.
385



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
11860 New password contains an invalid character.

Explanation: You specified an invalid character in the NINPASSWORD parameter. See 
“Using accounts, user IDs, and passwords” on page 2 for network password rules.

User Response: Enter a valid password in the NINPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO and retry the program. If you specify ’y’ for ENCRYPT, make sure 
the password is encrypted properly. If the problem persists, contact the Customer Care Help 
Desk.

11862 Product access denied.

Explanation: You do not have access to the product you specified.

User Response: Make sure the PRODUCT parameter of the IDENTIFY command in 
BASEIN.PRO is correct and retry the program. If the problem persists, contact the Customer 
Care Help Desk.

11863 Product not available.

Explanation: You may not start a session with Information Exchange using Expedite Base at 
this time.

User Response: Wait and retry the program later. If the problem persists, contact the Customer 
Care Help Desk.

11864 Account/userid invalid for this terminal.

Explanation: You cannot use this phone number with your account and user ID.

User Response: Contact the Customer Care Help Desk to get a valid phone number.

11865 Invalid new password entered.

Explanation: The NINPASSWORD you specified is invalid. It is a reserved word and is not 
allowable as a network password.

User Response: Enter another password in the NINPASSWORD parameter of the IDENTIFY 
command in BASEIN.PRO and retry. If the problem persists, contact the Customer Care Help 
Desk.

11866 Too many logons with same user ID.

Explanation: There are too many session logons with the same user ID.

User Response: Make sure that you end at least one other session for this user ID. If the 
problem persists, contact the Customer Care Help Desk.

11867 User has reached logon maximum.

Explanation: There are too many session logons with the same user ID.

User Response: Make sure that you end at least one other session for this user ID. If the 
problem persists, contact the Customer Care Help Desk.
386



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
11868 Error logging on to the network.

Explanation: There was an error attempting to log on to the network.

User Response: Contact the Customer Care Help Desk.

11869 Product access denied from this connection type.

Explanation: You cannot use the specified product with a dial connection.

User Response: Make sure the PRODUCT parameter of the IDENTIFY command in 
BASEIN.PRO is correct and retry the program. If the problem persists, contact the Customer 
Care Help Desk.

11870 Incomplete user ID definition.

Explanation: There was an error attempting to log on to the network.

User Response: Try the program again. If the problem persists, contact the Customer Care 
Help Desk.

11871 Error logging on to the network.

Explanation: There was an error attempting to log on to the network.

User Response: Try the program again. If the problem persists, contact the Customer Care 
Help Desk.

11998 Batch logon response invalid.

Explanation:  There was an error attempting to log on to the network.

User Response: Make sure you have specified the correct product name in the PRODUCT 
parameter on the DIAL command. If you omit the PRODUCT parameter or leave it blank, it 
defaults to INFOEXCH. Do not change the default unless instructed to do so by network 
personnel.

11999 Batch logon request failed.

Explanation: There was an error attempting to log on to the network.

User Response: Try the program again. If the problem persists, contact the Customer Care 
Help Desk.
387



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
Modem script syntax errors 
This section desribes the return codes for modem script syntax errors.

12010 No return code set for the command file.

Explanation: There was no return code set while processing the modem command file. 
Therefore, Expedite Base for Windows does not know whether the dial procedure was 
successful.

User Response: Modify the modem command file to make sure that the logic in the command 
allows the RETURN command to be processed or add the RETURN command to the modem 
command if it is missing. The trace file, IEBASE.TRC, may be helpful in determining the 
problem. Specify ’y’ for CNNCT and ’y’ for MODEM on the TRACE command in 
BASEIN.PRO to turn on trace for the modem command processing. Correct the modem 
command file and retry the program. See “Using modem script commands” on page 305 for 
more information.

12011 Code missing on RETURN command in modem script file.

Explanation: The CODE parameter in the RETURN command is missing or blank. A CODE 
must be specified.

User Response: Correct the RETURN command and run the program again.

12012 Invalid parameter on GETVALUE command in modem script file.

Explanation: The variable named in the INTO parameter on the GETVALUE command is not 
recognized.

User Response: You specified an invalid variable name for the INTO parameter on the 
GETVALUE command. Supported variables are:  CNNCTBAUD. Correct the GETVALUE 
command and run the program again.

12013 BAUD invalid on OPENPORT command in modem script file.

Explanation: You specified an invalid value for the BAUD parameter in the OPENPORT 
command.

User Response: Correct the OPENPORT command and run the program again.

12014 BITS invalid on OPENPORT command in modem script file.

Explanation: You specified an invalid value for the BITS parameter in the OPENPORT 
command.

User Response: Correct the OPENPORT command and run the program again.

12015 CR invalid on SAY command in modem script file.

Explanation: You specified an invalid value for the CR parameter in the SAY command.

Explanation: Correct the SAY command and run the program again.
388



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
12016 Code too large on RETURN command in modem script file.

Explanation: The CODE parameter in the RETURN command is too large.

User Response: Correct the RETURN command in the modem script file and run the program 
again.

12017 STRING missing on SAY command in modem script file.

Explanation: The STRING parameter in the SAY command is missing or blank. A STRING 
must be specified if CR is not specified on the SAY command.

User Response: Correct the SAY command in the modem script file and run the program 
again.

12018 PACED invalid on SAY command in modem script file.

Explanation: You specified an invalid value for the PACED parameter in the SAY command.

User Response: Correct the SAY command and run the program again.

12019 TIMEOUT invalid on GETANSWER command in modem script file.

Explanation: You specified an invalid value for the TIMEOUT parameter in the 
GETANSWER command.

User Response: Correct the GETANSWER command and run the program again.

12020 Line number too long in modem script file.

Explanation: A line number in the old style modem command file is too long. The maximum 
value of a line number is 998.

User Response: Correct the file and retry the program.

12021 MODE invalid on GETANSWER command in modem script file.

Explanation: You specified an invalid value for the MODE parameter in the GETANSWER 
command.

User Response: Correct the GETANSWER command and run the program again.

12022 REPEAT invalid on IFANSWER command in modem script file.

Explanation: You specified an invalid value for the REPEAT parameter in the IFANSWER 
command.

User Response: Correct the IFANSWER command and run the program again.

12024 GOTO invalid on IFANSWER command in modem script file.

Explanation: You specified an invalid value for the GOTO parameter in the IFANSWER 
command.

User Response: Correct the IFANSWER command and run the program again.
389



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
12025 TO missing on GO command in modem script file.

Explanation: The TO parameter in the GO command is missing or blank. A TO parameter 
must be specified.

User Response: Correct the GO command in the modem script file and run the program again.

12026 OF missing on IFVALUE command in modem script file.

Explanation: The OF parameter in the IFVALUE command is missing or blank. An OF 
parameter must be specified.

User Response: Correct the IFVALUE command in the modem script file and run the program 
again.

12027 IS missing on IFVALUE command in modem script file.

Explanation: The IS parameter in the IFVALUE command is missing or blank. An IS 
parameter must be specified.

User Response: Correct the IFVALUE command in the modem script file and run the program 
again.

12028 TO missing on IFVALUE command in modem script file.

Explanation: The TO parameter in the IFVALUE command is missing or blank. A TO 
parameter must be specified.

User Response: Correct the IFVALUE command in the modem script file and run the program 
again.

12029 GOTO missing on IFVALUE command in modem script file.

Explanation: The GOTO parameter in the IFVALUE command is missing or blank. A GOTO 
parameter must be specified.

User Response: Correct the IFVALUE command in the modem script file and run the program 
again.

12030 Non-numeric character in line number in command file.

Explanation: A line number in the old style modem command file contains nonnumeric 
characters.

User Response: Correct the file and retry the program.

12031 OF invalid on IFVALUE command in modem script file.

Explanation: You specified an invalid value for the OF parameter in the IFVALUE command.

User Response: Correct the IFVALUE command and run the program again.

12032 Modem script file not found.

Explanation: Expedite Base could not find the script file to process.
390



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Verify that the script file exists in the current directory or the directory 
specified in the IEPATH parameter on the SESSION command in the profile command file, 
BASEIN.PRO.

12033 Duplicate label in modem script file.

Explanation: The script file had the same label specified more than once.

User Response: Correct the label names so that each is unique. Retry the program.

12034 Label undefined in modem script file.

Explanation: A command in the script file referenced a label that doesn’t exist.

User Response: Verify that all referenced label names in the script file exist and retry the 
program.

12036 IS invalid on IFANSWER command in modem script file.

Explanation: You specified an invalid value for the IS parameter in the IFANSWER 
command.

User Response: Correct the IFANSWER command and run the program again.

12037 GOTO missing on IFANSWER command in modem script file.

Explanation: The GOTO parameter in the IFANSWER command is missing or blank. A 
GOTO parameter must be specified.

User Response: Correct the IFANSWER command and run the program again.

12038 Invalid hex string specified in modem script file.

Explanation: You specified an invalid hex string in the script file. Hex strings must be in the 
format %xHHxHH%, where H represents a hex character. Be sure to pair hex characters together.

User Response: Correct the hex string in the modem script file and run the program again.

12041 STRING missing on SASYNC command in modem script file.

Explanation: The STRING parameter in the SAYSYNC command is missing or blank. A 
STRING parameter must be specified.

User Response: Correct the SAYSYNC command and run the program again.

12042 STRING missing on IFONSCREEN command in modem script file.

Explanation: The STRING parameter in the IFONSCREEN command is missing or blank. A 
STRING parameter must be specified.

User Response: Correct the IFONSCREEN command and run the program again.

12043 TIMEOUT invalid on IFONSCREEN command in modem script file.

Explanation: You specified an invalid value for the TIMEOUT parameter in the 
IFONSCREEN command.
391



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Correct the IFONSCREEN command and run the program again.

12044 Too many commands specified in modem script file.

Explanation: You have specified too many commands in your modem script file. The 
maximum number of commands allowed is 100.

User Response: Modify the modem script file so that you do not exceed the maximum number 
of commands and retry the program.

12045 MAXREPEAT invalid on IFVALUE command in modem script file.

Explanation: You specified an invalid value for the MAXREPEAT parameter in the IFVALUE 
command.

User Response: Correct the IFVALUE command and run the program again.

12046 GOTO missing on IFONSCREEN command in modem script file.

Explanation: You did not specify a GOTO parameter on the IFONSCREEN command.

User Response: Correct the IFONSCREEN command and run the program again.

12047 DATABITS invalid on SETLINE command in modem script file.

Explanation: You specified an invalid value for the DATABITS parameter in the SETPARITY 
command. Valid values are 7 and 8.

User Response: Correct the SETLINE command and run the program again.

12048 STOPBITS invalid on SETLINE command in modem script file.

Explanation: You specified an invalid value for the STOPBITS parameter in the SETLINE 
command. Valid values are 1 and 2.

User Response: Correct the SETLINE command and run the program again.

12049 PARITY invalid on SETLINE command in modem script file.

Explanation: You specified an invalid value for the PARITY parameter in the SETPARITY 
command. Valid values are EVEN, ODD, and NONE.

User Response: Correct the SETLINE command and run the program again.

12050 Syntax error in command file.

Explanation: There is a syntax error in the old style modem command file.

User Response: Check the command lines that you changed or added for accuracy. The trace 
file, IEBASE.TRC, may be helpful in determining the problem. Specify ’y’ for CNNCT on the 
TRACE command in IEBASE.PRO to turn on the trace for the modem command processor. 
Correct the error and retry the program.

12055 Command not recognized in modem script file.

Explanation: You specified an invalid command in the script file.
392



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Determine which command is in error. One possible cause is that you 
misspelled the command. Correct the problem and retry the program.

12060 Too many parameters on command line.

Explanation: You specified too many parameters or too much text on one modem command 
line in an old style modem script. The maximum number of parameters allowed is 10.

User Response: Correct the command line and retry the program.

12070 Label too long in modem script file.

Explanation: You specified a label in the script file that is too long. Labels can be up to 12 
characters in length.

User Response: Correct the label and retry the program.

12081 Null character found in modem script file.

Explanation: There is a null character in the script file. Null characters are not permitted in the 
script files.

User Response: Correct the script file and retry the program.

12083 Command or parameter name too long in modem script file.

Explanation: A command or parameter in the script file is invalid because it is too long.

User Response: Determine which parameter is in error and retry the program.

12084 Command too long in modem script file.

Explanation: A parameter value in the script file is invalid because it is too long. You may 
have omitted the closing parenthesis from a value.

User Response: Determine which command is in error and retry the program.

12085 Command expected but not found in modem script file.

Explanation: The modem script processor was expecting either a command or the end of file 
and found something unexpected. It is possible that you specified a parameter and value before a 
command.

User Response: Determine where the error occurred. Correct the error and retry the program.

12086 Parameter/value or semicolon expected but not found in mode script file.

Explanation: There is a syntax error in the script file. Either a semicolon or a parameter and 
value was expected but was not found. This is usually caused by omitting the semicolon from a 
command, omitting the value of a parameter, or leaving space between the parameter name and 
value.

User Response: Determine which command produced the error. Correct the error and retry the 
program.
393



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
12091 Parameter value too long in modem script file.

Explanation: A parameter value in the script file is invalid because it is longer than the 
maximum length permitted for the parameter. This is sometimes caused by unbalanced paren-
theses.

User Response: Determine which parameter is in error. Correct the error and retry the 
program.

12092 Duplicate parameter found in modem script file.

Explanation: A parameter in the script file was specified more than once for the command.

User Response: Determine which parameter is in error. Correct the problem and retry the 
program.

12093 Invalid parameter found in modem script file.

Explanation: You specified an invalid parameter in the script file.

User Response: Determine which parameter is in error. Correct the problem and retry the 
program.

12110 Attempted to receive data before the port is open.

Explanation: There is not an OPENPORT command before you try to receive data. The port 
must be opened before you can receive any data.

User Response: Correct the modem command file and retry the program. The trace file, 
IEBASE.TRC, may be helpful in determining the problem. Specify ’y’ for CNNCT on the TRACE 
command in IEBASE.PRO to turn on the trace for the modem script processor.

12120 Attempted to send data before the port is open.

Explanation: There is not an OPENPORT command before you try to receive data. The port 
must be opened before you can send any data.

User Response: Correct the modem command file and retry the program. The trace file, 
IEBASE.TRC, may be helpful in determining the problem. Specify ’y’ for CNNCT on the TRACE 
command in IEBASE.PRO to turn on the trace for the modem script processor.

12130 Redial requested from modem script file.

Explanation: An error was encountered and the modem script set the return code to cause the 
modem to redial.

User Response: No action required. If the modem script logic requests a redial and the 
maximum number of redials has been exceeded, Expedite Base will return the 11802 return code. 
Otherwise, Expedite Base will try to execute the dial connect script again.

Display status script syntax errors 
This section describes the return codes for display status script syntax errors.
394



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
12210 Event not recognized in display script file.

Explanation: You specified an invalid event in the script file.

User Response: Determine which event is in error. A possible cause of this error is a 
misspelled event. Correct the problem and retry the program.

12211 Invalid foreground color specified in display script file.

Explanation: You specified an invalid FOREGROUND parameter value in the script file. See 
documentation for a list of valid foreground colors.

User Response: Correct the error in the script file and retry the program.

12212 Invalid background color specified in display script file.

Explanation: You specified an invalid BACKGROUND parameter value in the script file. See 
documentation for a list of valid backgound colors.

User Response: Correct the error in the script file and retry the program.

12213 Invalid row specified in display script file.

Explanation: You specified an invalid ROW parameter value in the script file. ROW must be 1 
to 24.

User Response: Correct the error in the script file and retry the program.

12214 Invalid column specified in display script file.

Explanation: You specified an invalid COLUMN parameter value in the script file. COLUMN 
must be 1 to 80.

User Response: Correct the error in the script file and retry the program.

12215 Cannot determine the action on event in display script file.

Explanation: The display script file consists of events followed by parameters which specify 
the action to perform for the event, such as CLEARLENGTH to clear text or TEXT to display 
text. Your display script has an event with a missing parameter or incomplete set of parameters. 
Expedite Base cannot determine what needs to be done. A generic example of this problem 
would be to have an EVENT statement with only the ROW and COLUMN parameters specified. 
With only ROW and COLUMN specified the statement does not indicate what needs to be done 
for this event.

User Response: Correct the error in the display script file and retry the program.

12216 Invalid top left row specified in display script file.

Explanation: You specified an invalid TOPLEFTROW parameter value in the script file. 
TOPLEFTROW is used to draw a box and must be 1 to 24.

User Response: Correct the error in the script file and retry the program.
395



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
12217 Invalid top left column specified in display script file.

Explanation: You specified an invalid TOPLEFTCOL parameter value in the script file. 
TOPLEFTCOL is used to draw a box and must be 1 to 80.

User Response: Correct the error in the script file and retry the program.

12218 Invalid bottom right row specified in display script file.

Explanation: You specified an invalid BOTRIGHTROW parameter value in the script file. 
BOTRIGHTROW is used to draw a box and must be 1 to 24. BOTRIGHTROW must be greater 
than TOPLEFTROW.

User Response: Correct the error in the script file and retry the program.

12219 Invalid bottom right column specified in display script file.

Explanation: You specified an invalid BOTRIGHTCOL parameter value in the script file. 
BOTRIGHTCOL is used to draw a box and must be 1 to 80. BOTRIGHTCOL must be greater 
than TOPLEFTCOL.

User Response: Correct the error in the script file and retry the program.

12220 Invalid clear length specified in display script file.

Explanation: You specified an invalid CLEARLENGTH parameter value in the script file. 
CLEARLENGTH must be 1 to 80.

User Response: Correct the error in the script file and retry the program.

12221 Invalid color specified in display script file.

Explanation: You specified an invalid COLOR parameter value in the script file.

User Response: Correct the error in the script file and retry the program.

12222 Invalid clear screen specified in display script file.

Explanation: You specified an invalid CLEARSCREEN parameter value in the script file. 
CLEARSCREEN must be y.

User Response: Correct the error in the script file and retry the program.

12223 Invalid wait time specified in display script file.

Explanation: You specified an invalid WAIT parameter value in the script file. WAIT must be 
0 to 9 seconds.

User Response: Correct the error in the script file and retry the program.

12281 Null character found in display script file.

Explanation: There is a null character in the script file. Null characters are not permitted in the 
script files.

User Response: Correct the script file and retry the program.
396



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
12283 Command or parameter name too long in display script file.

Explanation: A command or parameter in the script file is invalid because it is too long.

User Response: Determine which parameter is in error and retry the program.

12284 Command parameter value too long in display script file.

Explanation: A parameter value in the script file is invalid because it is too long. You may 
have omitted the closing parenthesis from a value.

User Response: Determine which parameter is in error and retry the program.

12285 Unexpected command or parameter found in display script file.

Explanation: The display script processor was expecting either a command or the end of file 
and found something unexpected. It is possible that you specified a parameter and value before a 
command.

User Response: Determine where the error occurred. Correct the error and retry the program.

12286 Parm/value or semicolon expected, not found in display script file.

Explanation: There is a syntax error in the script file. Either a semicolon or a parameter and 
value was expected but was not found. This is usually caused by omitting the semicolon from a 
command, omitting the value of a parameter, or leaving space between the parameter name and 
value. 

User Response: Determine which command produced the error. Correct the error and retry the 
program.

12291 Parameter value too long in display script file.

Explanation: A parameter value in the script file is invalid because it is longer than the 
maximum length permitted for the parameter. This is sometimes caused by unbalanced paren-
theses.

User Response: Determine which parameter is in error. Correct the error and retry the 
program.

12292 Duplicate parameter found in display script file.

Explanation: A parameter in the script file was specified more than once for the command.

User Response: Determine which parameter is in error. Correct the problem and retry the 
program.

12293 Invalid parameter found in display script file.

Explanation: You specified an invalid parameter in the script file.

User Response: Determine which parameter is in error. Correct the problem and retry the 
program.
397



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
12300 Invalid combination of parameters on event in display script file.

Explanation: You specified an invalid combination of parameters for a particular event.

User Response: Determine which event is in error. Correct the problem and retry the program.

Communication device driver errors 
This section describes the return codes for communication device driver errors.

13020 Invalid port.

Explanation: The port selected in the modem script file is invalid. The valid values are 1, 2, 3, 
or 4.

User Response: Correct the value in the modem script file. Retry the program.

13030 Unable to open port.

Explanation: Expedite Base was unable to open the specified port.

User Response: Check to see that there are no problems with the asynchronous communica-
tions adapter and that you specified the correct port. Retry the program.

13040 Invalid baud rate.

Explanation: The specified baud rate is invalid. Valid baud rates are 300, 1200, 2400, 4800, 
9600, 14400, 19200, 38400, 56000, and 57600.

User Response: Check that you specified the appropriate baud rate for your modem. Retry the 
program.

13050 Invalid parity.

Explanation: The parity specified in the modem script file is invalid. Valid parity values are 7 
and 8.

User Response: Check that you specified the appropriate parity for your modem. Retry the 
program.

13096 Communication server interface software not loaded.

Explanation: Expedite Base is unable to communicate with a modem on the communications 
server because the communication servers interface software is not loaded.

User Response: Load the interface software before calling IEBASE. Retry the program.

13097 Internal error attempting to open port.

Explanation: Expedite Base encountered an internal error while attempting to open the port.

User Response: Contact the Customer Care Help Desk.

13098 Unable to initialize the port.

Explanation: Expedite Base encountered a problem while attempting to initialize the port.
398



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Power off the modem and power it on again. Retry the program. If the 
problem persists, retry the program after doing each of the following:  reset the communications 
server, restart the communications server, reboot the communications server. If the problem still 
persists, contact the Customer Care Help Desk.

13099 Unable to change port parameters.

Explanation: Expedite Base encountered a problem while attempting to change the port 
parameters.

User Response: Power off the modem and power it on again. Retry the program. If the 
problem persists, retry the program after doing each of the following:  reset the communications 
server, restart the communications server, reboot the communications server. If the problem still 
persists, contact the Customer Care Help Desk.

13100 Unable to close port.

Explanation: Expedite Base encountered a problem while attempting to close the port. 

User Response: Power off the modem and power it on again. Retry the program. If the 
problem persists, retry the program after doing each of the following:  reset the communications 
server, restart the communications server, reboot the communications server.

Parser errors 
This section describes the return codes for parser errors.

14000 Null character in input file.

Explanation: There is a null character in either the profile command file BASEIN.PRO, or the 
message command file, BASEIN.MSG. Null characters are not permitted in BASEIN.MSG or 
BASEIN.PRO.

User Response: Check the message response file, BASEOUT.MSG, the profile response file, 
BASEOUT.PRO, or the response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the command file and retry the program.

14020 Command or parameter name too long.

Explanation: A command or parameter name in the command file is invalid because it is too 
long.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the command file and retry the program.

14030 Parameter value too long.

Explanation: A parameter value in the command file is invalid because it is longer than the 
maximum length permitted for the parameter. This is sometimes caused by unbalanced paren-
theses.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.
399



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
14040 Command expected but not found.

Explanation: You did not specify an expected command in the command file. It is possible 
that you specified a parameter before a command.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.

14050 Parameter and value or semicolon expected but not found.

Explanation: There is a syntax error in the profile command file BASEIN.PRO, or message 
command file, BASEIN.MSG. Either a semicolon or a parameter and value was expected but was 
not found. This is usually caused by omitting the semicolon from a command, omitting the value 
of a parameter, or leaving space between the parameter name and value.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.

15010 Parameter value too long.

Explanation: The parameter value for one of the commands in the command file is longer than 
the maximum allowed for that parameter.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.

15020 Duplicate parameter found.

Explanation: The same parameter was specified more than once in a command.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.

15030 Invalid parameter found.

Explanation: You specified an invalid parameter in the command file.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.

15040 Command not recognized.

Explanation: You specified an unrecognized command in the command file.

User Response: Check the message response file, BASEOUT.MSG, profile response file, 
BASEOUT.PRO, or response work file, TEMPOUT.MSG, to determine which command 
produced the error. Correct the appropriate command file and retry the program.
400



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
15042 COMMIT command only valid with user-initiated recovery.

Explanation: You specified a COMMIT command with a RECOVERY parameter on the 
TRANSMIT command specified as c, s, or f. COMMIT commands are procesessed with U for 
RECOVERY only.

User Response: Update the RECOVERY parameter on the TRANSMIT command to u, or 
remove all COMMIT commands from the message command file, BASEIN.MSG. Retry the 
program. 

Destination verification errors 
This section describes return codes for destination verification errors.

16020 The destination specified is not a valid IE destination.

Explanation: The destination specified in the SEND or SENDEDI command does not exist. The 
data was not sent.

User Response: Correct the destination in the SEND command, EDI data, EDI destination 
table, or EDI qualifier table. Retry the command.

16030 IE destination is blocked by trading partner list or payment levels.

Explanation: The destination in the SEND or SENDEDI command exists. However, the message 
cannot be sent because it is blocked by the payment level specified or by the trading partner list. 
The data was not sent.

User Response: Make sure the Information Exchange destination and payment levels are 
correct. Check with your service administrator to change a trading partner list or payment levels. 
Retry the command.

16040 IE was unable to verify the destination immediately.

Explanation: The destination in the SEND or SENDEDI command could not be verified immedi-
ately because it is on another Information Exchange system. The data was not sent.

User Response: Retry the command using either an f, g or n value for the VERIFY parameter. 
Information Exchange cannot immediately verify a destination on another system.

16050 No update access to library.

Explanation: You specified ’Y’ for VERIFY on the PUTMEMBER command and either the 
library does not exist or you do not have update access to the library. The data was not sent.

User Response: Use Information Exchange Administration Services to verify that the library 
you are trying to update exists and that you have update authority for it. Retry the command.

CAUTION: If you reset the session using the RESET parameter, you will no longer be 
able to continue the previous session. If it is necessary to RESET the session, modify 
the message command file, BASEIN.MSG, deleting any commands that have already 
been processed. Failure to do this may result in some data being lost or duplicated.
401



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
16052 File with specified message key does not exist.

Explanation: The message key you specified does not match any of the files in your mailbox.

User Response: Verify that you specified the correct message key. The message key is shown 
on the AVAILABLE record in response to a QUERY command. Correct the message key and 
retry the command.

16054 File to purge is being received.

Explanation: The message key you specified is for a file that is in the process of being 
received, and it cannot be purged.

User Response: If you do not want to receive the file, then discontinue the receive process and 
reset the Information Exchange session. Retry the command.

16056 Information Exchange profile does not allow files to be purged.

Explanation: Your Information Exchange profile does not allow purging of files from your 
mailbox.

User Response: If you want to be able to purge files from your mailbox, use Information 
Exchange Administration Services or ask your Service Administrator to change your profile to 
allow this action. Retry the command.

16060 Unable to retrieve library member.

Explanation: Information Exchange could not retrieve the library member because either the 
library does not exist, you do not have read access to the library, or the destination you specified 
is invalid.

User Response: Receive the system error message from your mailbox. The system error 
message explains why the GETMEMBER failed. Correct the problem and retry the command.

EDI errors 
This section describes return codes for EDI errors.

17102 Invalid X12 header in file.

Explanation: The X12 header in the data you attempted to send is invalid. This envelope and 
the envelopes following it in the file were not sent.

User Response: Correct the X12 ISA header that caused the error in the envelope, and retry 
the command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.

17106 Missing X12 destination in file.

Explanation: The X12 header in the data you attempted to send does not contain an X12 
receiver ID. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the X12 ISA header that caused the error in the envelope, and retry 
the command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.
402



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
17108 Invalid X12 destination in file.

Explanation: The X12 header in the data you attempted to send contains an X12 receiver ID 
that could not be resolved. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the EDI qualifier table, the EDI destination table, or the X12 ISA 
header that caused the error in the envelope. Retry the command. If there were multiple 
envelopes in this file, check the message response file, BASEOUT.MSG, for SENT records to 
determine which envelopes in the file were sent.

17110 Invalid X12 binary or encrypted segment in file.

Explanation: The X12 data contains an invalid binary or security segment. This envelope and 
the envelopes following it in the file were not sent.

User Response: Correct the X12 data and retry the command. If there were multiple envelopes 
in this file, check the message response file BASEOUT.MSG, for SENT records to determine 
which envelopes in the file were sent.

17112 Invalid X12 binary or encrypted length in file.

Explanation: The length element in an X12 binary or security segment is invalid. This 
envelope and the envelopes following it in the file were not sent.

User Response: Correct the X12 data and retry the command. If there were multiple envelopes 
in this file, check the message response file BASEOUT.MSG, for SENT records to determine 
which envelopes in the file were sent.

17114 X12 control number is missing or invalid.

Explanation: The X12 header in the data you attempted to send does not contain an inter-
change control number, or the interchange control number is not numeric. This envelope and the 
envelopes following it in the file were not sent.

User Response: Correct the X12 ISA header that caused the error in the envelope and retry the 
command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.

17116 X12 control number error.

Explanation: The X12 control number in the IEA is missing or does not match the control 
number in the ISA. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the X12 data that caused the error and retry the command. If there 
were multiple envelopes in this file, check the message response file, BASEOUT.MSG, for 
SENT records to determine which envelopes in the file were sent.

17118 Missing IEA in X12 data.

Explanation: The X12 IEA segment was not found in the data. This envelope and the 
envelopes following it in the file were not sent.

User Response: Correct the X12 data that caused the error and retry the command. If there 
were multiple envelopes in this file, check the message response file, BASEOUT.MSG, for 
SENT records to determine which envelopes in the file were sent.
403



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
17202 Invalid UCS header in file.

Explanation: The UCS BG header in the data you attempted to send is invalid. The segment 
terminator must be hex 15. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the UCS BG header that caused the error and retry the command. If 
there were multiple envelopes in this file, check the message response file, BASEOUT.MSG, for 
SENT records to determine which envelopes in the file were sent.

17206 Missing UCS destination in file.

Explanation: The UCS header in the data you attempted to send does not contain a UCS 
receiver ID. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the UCS BG header that caused the error and retry the command. If 
there were multiple envelopes in this file, check the message response file, BASEOUT.MSG, for 
SENT records to determine which envelopes in the file were sent.

17208 Invalid UCS destination in file.

Explanation: The UCS BG header in the data you attempted to send contains a UCS receiver 
ID that could not be resolved. This envelope and the envelopes following it in the file were not 
sent.

User Response: Correct the EDI qualifier table, the EDI destination table, or the UCS BG 
header that caused the error, and retry the command. If there were multiple envelopes in this file, 
check the message response file BASEOUT.MSG, for SENT records to determine which 
envelopes in the file were sent.

17302 Invalid EDIFACT header in file.

Explanation: The EDIFACT UNB header in the data you attempted to send is invalid. The 
segment terminator was not found. This envelope and the envelopes following it in the file were 
not sent.

User Response: Correct the EDIFACT UNB header in the envelope that caused the error and 
retry the command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.

17306 Missing EDIFACT destination in file.

Explanation: The EDIFACT UNB header in the data you attempted to send does not contain 
an EDIFACT receiver ID. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the EDIFACT UNB header that caused the error, and retry the 
command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.

17308 Invalid EDIFACT destination in file.

Explanation: The EDIFACT UNB header in the data you attempted to send contains an 
EDIFACT receiver ID that could not be resolved. This envelope and the envelopes following it in 
the file were not sent.
404



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Correct the EDI qualifier table, the EDI destination table, or the EDIFACT 
UNB header in the envelope that caused the error. Retry the command. If there were multiple 
envelopes in this file, check the message response file, BASEOUT.MSG, for SENT records to 
determine which envelopes in the file were sent.

17316 EDIFACT control number error.

Explanation: The EDIFACT control number in the UNZ is missing or does not match the 
control number in the UNB. This envelope and the envelopes following it in the file were not 
sent.

User Response: Correct the EDIFACT data in the envelope that caused the error and retry the 
command. If there were multiple envelopes in this file check the response file for SENT records 
to determine which envelopes in the file were sent.

17318 Missing UNZ in EDIFACT data.

Explanation: A UNA or UNB was found before the preceding EDIFACT envelope ended. 
This envelope and envelopes following it in the file were not sent.

User Response: Correct the EDIFACT data that caused the error and retry the command. If 
there were multiple envelopes in this file, check the response file for SENT records to determine 
which envelopes in the file were sent.

17402 Invalid UN/TDI header in file.

Explanation: The UN/TDI STX header in the data you attempted to send is invalid. The 
segment terminator was not found. This envelope and the envelopes following it in the file were 
not sent.

User Response: Correct the UN/TDI STX header that caused the error, and retry the 
command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.

17406 Missing UN/TDI destination in file.

Explanation: The UN/TDI STX header in the data you attempted to send does not contain a 
UN/TDI receiver ID. This envelope and the envelopes following it in the file were not sent.

User Response: Correct the UN/TDI STX header that caused the error, and retry the 
command. If there were multiple envelopes in this file, check the message response file, 
BASEOUT.MSG, for SENT records to determine which envelopes in the file were sent.

17408 Invalid UN/TDI destination in file.

Explanation: The UN/TDI STX header in the data you attempted to send contains a UN/TDI 
receiver ID that could not be resolved. This envelope and the envelopes following it in the file 
were not sent.

User Response: Correct the EDI qualifier table, the EDI destination table, or the UN/TDI STX 
header in the envelope that caused the error. Retry the command. If there were multiple 
envelopes in this file, check the message response file, BASEOUT.MSG, for SENT records to 
determine which envelopes in the file were sent.
405



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
18010 Null character found in EDI table.

Explanation: You specified a null character in the EDI destination table or the EDI qualifier 
table specified.

User Response: Correct the table and retry the command.

18020 EDI table has an invalid parameter.

Explanation: The parameter name in the EDI destination table or EDI qualifier table is not a 
valid parameter name or does not have an associated value.

User Response: Correct the table and retry the command.

18030 EDI table has an invalid parameter value.

Explanation: The parameter value in the EDI destination table or EDI qualifier table is longer 
than the maximum length allowed.

User Response: Correct the table and retry the command.

18040 EDI table contains a duplicate parameter.

Explanation: You specified the same parameter more than once for an entry in the EDI desti-
nation table or EDI qualifier table. This may be caused by a missing semicolon between entries.

User Response: Correct the table and retry the program.

18110 End of file found before end of EDI envelope in file.

Explanation: Expedite Base encountered the end of the file before the end of the EDI 
envelope. This envelope was not sent.

User Response: Correct the EDI data and retry the command. If there were multiple envelopes 
in this file, check the message response file, BASEOUT.MSG, for SENT records to determine 
which envelopes in the file were sent.

18120 Unable to determine EDI type in file.

Explanation: Expedite Base could not determine the type of EDI data you attempted to send. 
This envelope and the envelopes following it in the file were not sent.

User Response: Correct the EDI data and retry the command. If there were multiple envelopes 
in this file, check the message response file, BASEOUT.MSG, for SENT records to determine 
which envelopes in the file were sent.

18130 Error processing EDI data in file.

Explanation: There was an error processing the EDI data you attempted to send. This 
envelope and the envelopes following it in the file were not sent.

User Response: Correct the EDI data and retry the command. If there were multiple envelopes 
in this file, check the message response file, BASEOUT.MSG, for SENT records to determine 
which envelopes in the file were sent.
406



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
18210 Qualifier table contains an invalid alias.

Explanation: You specified an invalid value for the default alias in the qualifier table. The first 
character of the ALIAS is the destination table type and must be blank, g, o, or p. The last three 
characters of the ALIAS are the destination table ID and must be one to three alphanumeric 
characters.

User Response: Correct the EDI destination table and retry the program.

18230 Invalid IE destination for entry.

Explanation: You specified an invalid Information Exchange destination for the EDI desti-
nation in the EDI destination table. This indicates that the destination is missing, incomplete, 
contains more than one destination type, or uses an invalid alias type.

User Response: Correct the EDI qualifier table and retry the program.

18250 End of file found before end of destination in file.

Explanation: Expedite Base encountered an end-of-file in the middle of either a qualifier table 
entry or EDI destination table entry. Make sure the last table entry ends with a semicolon.

User Response: Correct the EDI qualifier table and retry the program.

18300 Invalid EDI data received.

Explanation: The data received with the RECEIVEEDI command was not valid EDI data. Once 
Expedite Base determines that the data was not valid EDI data, the rest of the data in the message 
is not reformatted. Therefore, the records may not be separated as you want them.

User Response: No response is needed. This is only an informational message.

General environment errors 
This section describes the return codes for general environment errors.

19001 DIALCOUNT invalid on TCPCOMM command.

Explanation: You specified an invalid value for the DIALCOUNT parameter on the 
TCPCOMM command. DIALCOUNT must be a single numeric character from 1 to 9.

User Response: Correct the DIALCOUNT parameter on the TCPCOMM command in the 
profile command file, BASEIN.PRO. Retry the program.

19002 DIALPROFILE parameter of TCPCOMM command must be specified.

Explanation: You specified COMMTYPE C on the TRANSMIT command and did not specify a 
DIALPROFILE on the TCPCOMM command. DIALPROFILE must be specified if COMMTYPE 
is C.

User Response: Specify a DIALPROFILE on the TCPCOMM command in the profile 
command file, BASEIN.PRO. Prior to using TCP/IP dial communication, you must set up the 
dialer and successfully connect to create a dialer login profile for your ID. The ID that you use in 
the dialer must be specified on the DIALPROFILE parameter of the TCPCOMM command. 
Specify the DIALPROFILE parameter and retry the program.
407



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
19003 TIMEOUT invalid on TCPCOMM command.

Explanation: You specified an invalid value for the TIMEOUT parameter on the TCPCOMM 
command. TIMEOUT must be a numeric character from 2 to 10.

User Response: Correct the TIMEOUT parameter on the TCPCOMM command in the profile 
command file, BASEIN.PRO. Retry the program.

19005 TCP/IP control file, HOSTNAME.FIL, not found.

Explanation: Expedite Base could not find TCP/IP control file, HOSTNAME.FIL. You must 
have a TCP/IP control file, HOSTNAME.FIL, if you specified COMMTYPE T or C on the 
TRANSMIT command.

User Response: Verify the TCP/IP control file, HOSTNAME.FIL, exists in the directory 
where Expedite Base is running or in the directory specified by the PATH command line 
parameter. Verify that you have FILES=60 or more in your CONFIG.SYS file. Verify that 
Expedite Base was installed with TCP/IP specified. If the problem persists, contact the Customer 
Care Help Desk.

19006 Unable to create socket.

Explanation: Expedite Base was unable to create a socket for TCP/IP communication with 
Information Exchange.

User Response: Verify that TCP/IP has been configured properly on your system. Verify that 
you have FILES=60 or more in your CONFIG.SYS file. Try to restart Expedite Base. If the 
problem persists, reboot the system. If the problem still persists, contact the Customer Care Help 
Desk.

19007 Unable to connect to Information Exchange.

Explanation: Expedite Base was not able to connect with any of the host names or addresses 
specified in the TCP/IP control file, HOSTNAME.FIL. Information Exchange, a route to Infor-
mation Exchange, or the Domain Name Server may be temporarily unavailable.

User Response: Verify that host names or host addresses and port numbers specified in 
HOSTNAME.FIL are valid. Retry the program. If the problem persists, contact the Customer 
Care Help Desk.

19008 Invalid host name, host address or port number.

Explanation: Expedite Base detected that a host name, host address or port number specified 
in the TCP/IP control file, HOSTNAME.FIL, is invalid.

User Response: Verify that each entry in the TCP/IP control file HOSTNAME.FIL has either a 
valid host name or address and a valid port number. Retry the program. If the problem persists, 
contact contact the Customer Care Help Desk.

19009 Unable to resolve host name.

Explanation: Expedite Base attempted to resolve the host name specified in the TCP/IP 
control file, HOSTNAME.FIL, but was unsuccessful. The host name may be invalid, or Infor-
mation Exchange or the Domain Name Server may be temporarily unavailable.
408



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Verify the host name specified in the TCP/IP control file HOSTNAME.FIL is 
valid. Retry the program. If the problem persists, contact the Customer Care Help Desk.

19010 Too many files open.

Explanation: Expedite Base was unable to open a file because too many files are open.

User Response: Make sure you specified FILES=60 or more in your CONFIG.SYS file. 
Increase the value for FILES in your CONFIG.SYS file, reboot the system and try again. If the 
problem persists, contact the Customer Care Help Desk.

19011 Unable to connect to host.

Explanation: Expedite was unable to connect to Information Exchange. One of the following 
may be the cause: your user ID is not enabled for TCP/IP, Information Exchange is temporarily 
unavailable, or the modem or phone line is turned off.  

User Response: If you have never connected to Information Exchange using TCP/IP with this 
user ID, it may not be enabled for TCP/IP.  If this problem persists, contact Customer Care. If you 
have previously connected to Information Exchange using TCP/IP with this user ID, verify that 
the host name or address and the port number specified in HOSTNAME.FIL are valid, and retry 
the program. If using a phone modem to connect, make sure that your modem is turned on and 
not in use, and that the phone line is plugged in and active.  Contact Customer Care if any of the 
suggestions above do not help.

19012 TCP/IP subsystem is not running.

Explanation: TCP/IP subsystem on your system is not running.

User Response: Verify that TCP/IP has been installed, configured, and started properly. Retry 
the program. If the problem persists, contact the Customer Care Help Desk.

19013 Invalid version of TCP/IP detected.

Explanation: Expedite Base detected an invalid version of TCP/IP on your system. Expedite 
Base requires a version of TCP/IP that supports version 1.1 or later of the TCP/IP API.

User Response: Install a version of TCP/IP that supports version 1.1 or later of the TCP/IP 
API.

19014 Invalid Information Exchange account and/or user ID specified.

Explanation: You specified an invalid account and user ID. Information Exchange does not 
recognize the account ID or user ID specified in the START command or the IDENTIFY command.

User Response: If a START command was used with ACCOUNT and USERID parameters, 
make sure they are correct. If the IEACCOUNT and IEUSERID are taken from the profile, make 
sure you specified them correctly in the IDENTIFY command in the profile command file, 
BASEIN.PRO. If the problem continues, contact the Customer Care Help Desk.

19015 Invalid Information Exchange password specified.

Explanation: Your Information Exchange password is incorrect.
409



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Correct the IEPASSWORD in the IDENTIFY command in the profile command 
file, BASEIN.PRO, or in the START command in the message command file, BASEIN.MSG, and 
retry the program. If you just changed your password, make sure you update the IDENTIFY or 
START command to reflect the new password. Retry the program. If the problem continues, 
contact the Customer Care Help Desk.

19016 Unable to receive from host.

Explanation: Expedite Base was unable to receive data from Information Exchange.

User Response: Verify that the link has not been dropped and your Information Exchange ID 
is not being used by someone else. Also, verify that the value specified for TIMEOUT parameter 
on the TCPCOMM command in the profile command file, BASEIN.PRO, is greater than the 
value specified for the WAIT parameter on the RECEIVE or RECEIVEDI command in the 
message command file, BASEIN.MSG. Retry the program. If the problem persists, contact the 
Customer Care Help Desk.

19017 Unable to send to host.

Explanation: Expedite Base was unable to send data to Information Exchange.

User Response: Verify that the link has not been dropped, your Information Exchange ID is 
not being used by someone else, and the inactivity timeout has not been reached. Retry the 
program. If the problem persists, contact the Customer Care Help Desk.

19031 Invalid data received.

Explanation: Expedite Base received invalid data during session initialization.  

User Response:  Check to make sure that you have used the correct IP address for a non-SSL 
connection and retry the program. 

19035 Dialer is missing modem information.

Explanation: You are attempting to use TCP/IP dial communication and the modem infor-
mation is not configured in the dialer.

User Response: Prior to using TCP/IP dial communication, set up the dialer, select save 
password, and successfully connect to network using the dialer. Retry the program.

19036 Failed to load dialer function.

Explanation: Attempt to load a dialer function failed.

User Response: Make sure the correct version of the dialer is is installed and is being used. 
Reinstall the dialer that came with the product and retry the program. If the problem persists, 
contact the Customer Care Help Desk.

19037 Failed to load dialer dll.

Explanation: Attempt to load dialer’s DLL failed.
410



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Make sure the correct DLL name is specified in the DIALERDLL entry of the 
WIN.INI file. For a Windows 95 dialer, the entry should be DIALERDLL=advapi95.dll; for a 
Windows 3.1 dialer, the entry should be DIALERDLL=advapi.dll. Specify the appropriate dialer 
DLL name and make sure the dialer is installed properly. Retry the program. If the problem 
persists, contact the Customer Care Help Desk.

19038 Dialprofile does not exist.

Explanation: The DIALPROFILE specified in the TCPCOMM command does not exist.

User Response: Verify the DIALPROFILE specified in the TCPCOMM command in the 
profile command file, BASEIN.PRO. Prior to using TCP/IP dial communication, you must set up 
the dialer and successfully connect to create a dialer login profile for your ID. The ID that you 
use in the dialer must be specified on the DIALPROFILE parameter of the TCPCOMM 
command. Retry the program.

19039 Network password not saved in the dialer.

Explanation: Your network password has not been saved in the dialer.

User Response: Start the dialer, select ’Save password’ and successfully connect to the 
network. Then exit from the dialer and retry the program.

19040 Dialer is missing last location information.

Explanation: You are attempting to use TCP/IP dial communication and the last location 
information is not configured in the dialer.

User Response: Prior to using TCP/IP dial communication, set up the dialer, select save 
password, and successfully connect to the network using the dialer. Retry the program.

19041 Dialer is missing primary or secondary phone number.

Explanation: You are attempting to use TCP/IP dial communication and the primary or 
backup phone information is not configured in the dialer.

User Response: Prior to using TCP/IP dial communication, set up the dialer, select save 
password, and successfully connect to the network using the dialer. Retry the program.

19042 Dialer is missing primary or backup country.

Explanation: You are attempting to use TCP/IP dial communication and the primary or 
backup country information is not configured in the dialer.

User Response: Prior to using TCP/IP dial communication, set up the dialer, select save 
password, and successfully connect to the network using the dialer. Retry the program.

19050 Failed to load TCP/IP DLL.

Explanation: Attempt to load TCP/IP DLL failed.

User Response: Verify that you have installed TCP/IP. If you installed TCP/IP in a directory 
other than the default, verify that the directory that contains winsock.dll is included in the PATH 
statement in AUTOEXEC.BAT. If the problem persists, contact the Customer Care Help Desk.
411



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
19060 Network communications gateway configurable error.

Explanation: Dialer encountered an error. 

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19070 Incorrect network account or user ID.

Explanation: An incorrect account or user ID has been specified in the dialer.

User Response: Set up the dialer, select save password, connect to the network, exit out of the 
dialer, and retry the program.

19075 Network account cannot access network.

Explanation: Your account is not configured to use the network.

User Response: Contact the Customer Care Help Desk.

19082 Incorrect network password.

Explanation: Incorrect password specified.

User Response: Enter your network password in the dialer and connect to the network, and 
then exit the dialer and retry the program.

19083 Network password has expired.

Explanation: Your network password has expired.

User Response: Use the dialer to change your network password, connect to the network, and 
then exit the dialer and retry the program.

19084 Incorrect network new password.

Explanation: Incorrect new password specified.

User Response: Enter a correct password in the dialer, connect to the network, and then exit 
the dialer and retry the program.

19086 Service has been revoked.

Explanation: Service has been revoked.

User Response: Contact the Customer Care Help Desk.

19087 Password revoked by excessive attempts.

Explanation: Your password has been revoked.

User Response: Contact the Customer Care Help Desk.

19088 Cannot change password at this time.

Explanation: Dialer encountered an error. Retry the program. 
412



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: If the problem persists, contact the Customer Care Help Desk.

19090 Cannot authenticate at this time.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19101 Country not supported on this gateway.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19110 Incorrect encryption type sent.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19111 Encryption init error.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19112 Client sent incorrect encrypt key.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19120 Multiple connections is not allowed.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19131 Invalid fixed IP address.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19132 Cannot contact your gateway.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.

19151 Port specified is invalid.

Explanation: Dialer encountered an error. Retry the program. 

User Response: If the problem persists, contact the Customer Care Help Desk.
413



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
19152 Modem not responding.

Explanation: Dialer was unable to communicate with the modem.

User Response: Make sure the modem is connected to your computer and is turned on. Retry 
the program.

19153 Modem responded "error".

Explanation: Dialer encountered an error. 

User Response: Make sure you have selected the correct modem in the dialer setup. Retry the 
program.

19154 Baud rate is invalid.

Explanation: Dialer encountered an error. 

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19156 No dial tone.

Explanation: Dialer encountered an error. 

User Response: Make sure the phone line is connected properly to the modem and is active. 
Retry the program.

19157 Phone line busy.

Explanation: Dialer encountered an error. 

User Response: Wait and retry the program. If the problem persists, contact the Customer Care 
Help Desk.

19158 No carrier for phone line.

Explanation: Dialer encountered an error. Wait and retry the program.

User Response: If the problem persists, contact the Customer Care Help Desk.

19159 Host not responding.

Explanation: Dialer encountered an error. Retry the program.

User Response: If the problem persists, contact the Customer Care Help Desk.

19162 Line is active.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.
414



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
19163 Line is inactive.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19164 Unable to write data to serial port.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19165 Dial was canceled.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19166 Com port in use.

Explanation: Dialer encountered an error.

User Response: Make sure that you exit the dialer before starting Expedite Base. Make sure no 
other program is using the comm port. Retry the program. If the problem persists, contact the 
Customer Care Help Desk.

19167 No logon information has been supplied or information missing.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19168 Re-select phone number to avoid ISD charge.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19173 Received unknown return code from gateway.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19181 Not connected to the network.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.
415



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
19182 Already logged on.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19183 Already logged on as someone else.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19184 Already connected once.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19185 This DLL has been registered for Expedite Base.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19186 This DLL has not been registered for Expedite Base.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19191 Tracing failed to initialize.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19200 Cannot register API.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19272 Invalid country code.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.
416



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
19273 Cannot load phone list.

Explanation: The phone list file, PHONE.LST, is missing.

User Response: Make sure that you have installed the dialer properly. That file must exist in 
the directory in which Expedite Base is running.

19274 Invalid phone database.

Explanation: Dialer encountered an error.

User Response: Make sure that you have installed the dialer properly. Retry the program. If 
the problem persists, contact the Customer Care Help Desk.

19275 Invalid country list.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19352 Request rejected by authorization server.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19353 Cannot contact authorization server.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19354 Set-up or configuration error.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19355 Authorization id not in authorization server database.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19356 Principle ID not in Service Manager.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.
417



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
19357 Authorization server disabled.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19358 Network connectivity problem.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19380 Cannot load modem list.

Explanation: The modem list file, MODEMS.LST, is missing.

User Response: Make sure that you have installed the dialer properly. That file must exist in 
the directory in which Expedite Base is running.

19381 Unable to get modem information; invalid modem tag.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19382 Unable to update application.

Explanation: Dialer encountered an error.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

19950 Unexpected dialer error.

Explanation: Expedite Base encountered an unexpected error while communicating with the 
dialer.

User Response: You may pass the dialer error code to GLE.EXE program to get more infor-
mation about the error. GLE.EXE is a public domain program provided by Microsoft on their 
Web site that displays information about Windows errors. Retry the program. If the problem 
persists, contact the Customer Care Help Desk.

20365 Not enough memory.

Explanation: Expedite Base is unable to get the memory it needs.

User Response: Make sure there is adequate memory and retry the program. If the problem 
persists, contact the Customer Care Help Desk.

20366 Unable to allocate global DOS memory.

Explanation: Expedite Base was unable to allocate Global DOS memory. This could be due to 
lack of system resources, such as memory.
418



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort, unload and reload Windows.

20410 Profile not found.

Explanation: Expedite Base could not find the profile information. You must have a profile 
command file, BASEIN.PRO.

User Response: Create the profile command file, BASEIN.PRO, containing all of the required 
information. Verify the profile exists in the current directory or in the directory specified by the 
PATH command line parameter.

20420 Old Expedite/PC profile found.???

Explanation: Expedite Base found an old profile IEBASE.PRO from expEDIte/PC. This 
profile is unusable.

User Response: You should install the Expedite Base product in its own directory. Do not 
install over an existing expEDIte/PC directory. Do not use the old expEDIte/PC profile 
IEBASE.PRO with this product. Correct the problem and retry the program. If the problem 
persists, contact the Customer Care Help Desk.

20516 EXPSETUP.PRO contained invalid values.

Explanation: Expedite Base found the EXPSETUP.PRO modem configuration file but it was 
damaged.

User Response: Erase the file and rebuild the configuration using the modem setup program 
included with Expedite Base. Retry the program.

20611 Error opening input file.

Explanation: Expedite Base could not open the message command file BASEIN.MSG.

User Response: Verify that the input file BASEIN.MSG exists in the current directory or in the 
directory specified in the PATH command line parameter. Verify that there is adequate memory 
to run the program. Make sure you specified FILES=60 in your CONFIG.SYS file. Check the 
message response file BASEOUT.MSG, for errors and retry the program.

20620 Unable to restart at checkpoint due to error in BASEIN.MSG.

Explanation: Commands in the message command file, BASEIN.MSG, processed before the 
last checkpoint have been changed. Expedite Base is unable to continue the current session at the 
latest checkpoint. Commands in BASEIN.MSG that have already been processed, echoed to 
BASEOUT.MSG, should not be changed if you want to restart the session at the last checkpoint.

User Response: Reset the session using the RESET command line parameter on the IEBASE 
command. Before starting the next session, review the message response file, BASEOUT.MSG, 
to see which commands were processed successfully. Remove these commands from the 
message command file, BASEIN.MSG, so they are not processed again.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
419



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
20820 Unable to restart due to changes to the response file.

Explanation: Expedite Base could not restart because the structure of the message response 
file, BASEOUT.MSG, was changed. You should not change this file when you try to restart a 
session that is in progress.

User Response: Reset the session using the RESET command line parameter on the IEBASE 
command. Before starting the next session, review the message response file, BASEOUT.MSG, 
to see which commands were processed successfully. Remove these commands from the 
message command file, BASEIN.MSG, so they are not processed again.

20901 Unable to register the application window class.

Explanation: Expedite Base was unable to register the application window class. This could 
be due to lack of system resources, such as memory.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort unload and reload Windows.

20902 Unable to create the application main window.

Explanation: Expedite Base was unable to create the application main window. This could be 
due to lack of system resources, such as memory.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort unload and reload Windows.

20903 Expedite Base already running, multiple instances not allowed.

Explanation: Expedite Base was already running and multiple instances are not allowed.

User Response: Do not try to run multiple instances of Expedite Base.

20904 Unable to create a font.

Explanation: Expedite Base was unable to create a font. This could be due to lack of system 
resources, such as memory.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort, unload and reload Windows.

20905 Wrong font.

Explanation: Expedite Base was unable to create a font. This could be due to lack of system 
resources, such as memory.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort, unload and reload Windows.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
420



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
20906 Error resizing the window.

Explanation: Expedite Base was unable to resize the main window. 

User Response: This could be related to a font error. Close application windows not needed, 
check memory usage, and close any shared applications. As a last resort, unload and reload 
Windows.

20907 Expedite Base has lost the accelerator key table property.

Explanation: Expedite Base has lost the accelerator key table property.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort, unload and reload Windows.

20908 Unable to create the Windows message queue.

Explanation: Expedite Base was unable to create the application’s message queue. This is 
probably due to lack of system resources, such as memory.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort, unload and reload Windows.

20909 Unable to load the font resource.

Explanation: Expedite Base was unable to load the Font Resource. This could be due to lack 
of system resources, such as memory.

User Response: Close application windows not needed, check memory usage, and close any 
shared applications. As a last resort, unload and reload Windows.

21000 Expedite Base encountered an unexpected condition.

Explanation: Expedite Base encountered an unexpected condition during execution.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk. You will be asked to FAX or send the trace file, IEBASE.TRC, from the failed session to 
the network for problem determination.

21013 Error reading edi table.

Explanation: Expedite Base could not read the EDI qualifier table file or EDI destination table 
file.

User Response: Make sure there are no input or output problems with the file. Retry the 
program.

21410 Display status script file missing.

Explanation: Expedite Base could not find the display status script file.

User Response: Verify that the display status script file, DISPLAY.SCR, is in the current 
directory or in the directory specified in the IEPATH parameter of the SESSION command in the 
profile command file, BASEIN.PRO. Make sure you specified FILES=60 in your CONFIG.SYS 
file. Retry the program.
421



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
21606 Receiver not found in look up table.

Explanation: You specified ’T’ for the COMPRESS parameter, which indicates you want the 
look-up table to be consulted before your data is sent compressed, but the receiver was not in the 
look-up table; therefore, the data was not compressed before sending. The COMPRESS 
parameter in your BASEOUT.MSG will be set to ’W’ for warning.

User Response: Check the message response file, BASEOUT.MSG, or response work file, 
TEMPOUT.MSG, to determine which receiver was not found in the table. Either specify ’Y’ for 
COMPRESS or add the receiver to your look-up table, and retry the program.

21810 File operation failed on file.

Explanation: Expedite Base could not access a file in the requested mode.

User Response: Check your disk and make sure there are no I/O problems. Make sure you 
have specified FILES=60 in your CONFIG.SYS file. Retry the program. If the problem persists, 
contact the Customer Care Help Desk. You will be asked to FAX or send the trace trace file, 
IEBASE.TRC, to the network for problem determination.

21950 Received files table damaged.

Explanation: An internal file used by Expedite Base to keep track of the files received, 
RCVOFSET.FIL, was damaged.

User Response: Reset the session using the RESET command line parameter on the IEBASE 
command. Before starting the next session, review the message response file, BASEOUT.MSG, 
to see which commands were processed successfully. Remove these commands from the 
message command file, BASEIN.MSG, so they are not processed again.

22010 Error opening translate table file.

Explanation: Expedite Base could not open the translate table you specified.

User Response: Verify that the translate table file exists in the current directory or in the 
directory specified in the IEPATH parameter of the SESSION command in BASEIN.PRO. The 
translate table name must have the extension XLT. If the translate table is in the correct directory, 
check your disk to make sure there are no I/O problems. Make sure you specified FILES=60 in 
your CONFIG.SYS file. Retry the program.

22020 Invalid translate table file.

Explanation: The translate table file specified is invalid.

User Response: Verify that the format of the table is correct and retry the program.

CAUTION: If you reset the session using the RESET command line parameter you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
422



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
22240 Error looking up message.

Explanation: An error occurred while looking up an error message. This is caused by an error 
in the error message description file, ERRORMSG.FIL, or the extended error text file 
ERRORTXT.FIL.

User Response: If you modified either the error message description file ERRORMSG.FIL, or 
the extended error text file, ERRORTXT.FIL, retry the program with the original files. If the 
problem continues, contact the Customer Care Help Desk.

22411 Error opening receive file.

Explanation: Expedite Base could not open the file for the data being received.

User Response: Make sure that you specified a valid FILEID for the RECEIVE or RECEIVEEDI 
command. Also, check the receive file for errors. Make sure you specified FILES=60 in your 
CONFIG.SYS file. Retry the program. 

22416 Unable to access directory for receive file.

Explanation: Expedite Base could not access or create the directory specified on the FILEID 
parameter of the RECEIVE or RECEIVEEDI command.

User Response: Check the temporary response file, TEMPOUT.MSG, to determine which 
command produced the error. If the drive and directory on the FILEID parameter is valid, make 
sure that there is enough disk space and there are no input or output problems. Correct the input 
file if necessary and retry the program.

22430 Free-format message error.

Explanation: Expedite Base could not convert the received data to a free format message. The 
data was written without any reformatting.

User Response: No response is needed. This is only an informational message.

22440 Length delimiters in data invalid.

Explanation: The common data header or DELIMITED parameter indicated that the data 
contained two-byte length delimiters to separate records, but the lengths indicated by the delim-
iters did not match the length of the data. The length delimiters were processed, but the records 
may not be separated as you want them.

User Response: No response is needed. This is only an informational message.

22450 Translate table in common data header invalid.

Explanation: The common data header indicated a translate table that was not found or was 
invalid on your system. The translate table from your profile was used instead.

User Response: Check your file to verify that the data was translated correctly. If it was not, 
you need to use another translate table. Check with your trading partner to see what translate 
table was used when the file was sent.
423



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
22610 Send or putmember file not found.

Explanation: Expedite Base could not open the file indicated in the SEND or PUTMEMBER 
command.

User Response: Check the FILEID parameter on the SEND or PUTMEMBER command and retry 
the command.

22615 Send or putmember file was empty.

Explanation: The file indicated in the SEND or PUTMEMBER command was empty.

User Response: Correct the message command file, BASEIN.MSG, SEND file, or PUTMEMBER 
file and retry the command.

23410 EDI send file not found.

Explanation: Expedite Base could not open the file indicated in the SENDEDI command.

User Response: Check that the file name is specified correctly on the command, and that the 
file exists in the directory specified. Make sure you have specified FILES=60 or more in your 
CONFIG.SYS file. Check your disk to make sure there are no I/O problems and that there is 
enough disk space. Retry the command.

23415 EDI send file was empty.

Explanation: The file indicated in the SENDEDI command did not contain any EDI data. It was 
empty or contained only blanks.

User Response: Correct the message command file, BASEIN.MSG, or EDI send file and retry 
the command.

23500 No libraries found to list.

Explanation: There were no libraries found for the parameters specified on the LISTLIBRARIES 
command.

User Response: Check parameters specified in the LISTLIBRARIES command. If the 
AUTHORITY, SELECTION, and/or OWNER parameters are incorrect, correct them and retry 
the command.

23502 Owning account for libraries invalid.

Explanation: The owning account ID specified by the OWNER parameter of the LISTLI-
BRARIES command is not recognized by Information Exchange.

User Response: Check the owning account ID specified in the LISTLIBRARIES command is 
correct. If not, correct the OWNER parameter and retry the command.

23504 Library does not contain any members.

Explanation: The library specified in the LISTMEMBERS command does not contain any 
members. The command was not processed.

User Response: Check the library specified in the LISTMEMBERS command. Correct the 
LIBRARY parameter and try again.
424



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
23506 Library does not exist.

Explanation: The library specified in the LISTMEMBERS command does not exist on Infor-
mation Exchange.

User Response: Check the library specified in the LISTMEMBERS command. If it is correct, use 
Information Exchange Administration Services to verify that the library exists.

23508 Library owning account invalid.

Explanation: The library owning account specified in the OWNER parameter of the 
LISTMEMBERS command is not recognized by Information Exchange.

User Response: Check the library owning account specified in the LISTMEMBERS command. 
Correct the OWNER parameter and retry the command.

23510 Read access not permitted for library.

Explanation: The ACCOUNT or USERID does not have read access to the library specified in 
the LISTMEMBERS command.

User Response: Use Information Exchange Administration Services to verify that you have 
read access to the library. Retry the command.

23610 Unexpected error in asynchronous communications.

Explanation: Expedite Base encountered an unexpected error during asynchronous communi-
cations.

User Response: Try the program again. If the problem persists, contact the Customer Care 
Help Desk.

Session start and end errors  
This section describes the return codes for session start and end errors.

24000 Error in restart processing.

Explanation: Expedite Base was not able to restart the session with Information Exchange. 
The session file, SESSION.FIL, may be damaged.

User Response: Reset the session using the RESET command line parameter on the IEBASE 
command. Also, make sure there is not another user using this user ID. If the problem persists, 
contact the Customer Care Help Desk. Before starting the next session, review the message 
response file, BASEOUT.MSG, to see which commands were processed successfully. Remove 
these commands from the message command file, BASEIN.MSG, so they are not processed 
again.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
425



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
24020 Restart and original recovery levels are not equal.

Explanation: The restart level differs from the original recovery level. The session has not 
started. Either your session file, SESSION.FIL, is damaged or another user is using this user ID.

User Response: Reset the session using the RESET command line parameter on the IEBASE 
command. Also, make sure there is not another user using this user ID. If the problem persists, 
contact the Customer Care Help Desk. Before starting the next session, review the message 
response file, BASEOUT.MSG, to see which commands were processed successfully. Remove 
these commands from the message command file, BASEIN.MSG, so they are not processed 
again.

24100 Session and information exchange checkpoints do not match.

Explanation: In a session using checkpoint-level recovery, the checkpoint numbers for the 
send or receive side of the session do not match the values Information Exchange recorded. Your 
session file, SESSION.FIL, may be damaged.

User Response: Reset the session using the RESET command line parameter on the IEBASE 
command. Also, make sure there is not another user using this user ID. If the problem persists, 
contact the Customer Care Help Desk. Before starting the next session, review the message 
response file, BASEOUT.MSG, to see which commands were processed successfully. Remove 
these commands from the message command file, BASEIN.MSG, so they are not processed 
again.

24200 Invalid time zone.

Explanation: You specified an invalid time zone.

User Response: Correct the TIMEZONE parameter in the IDENTIFY command in the profile 
command file, BASEIN.PRO, and retry the program. If the problem persists, contact the 
Customer Care Help Desk.

24210 Invalid maximum segments.

Explanation: Expedite Base used an invalid value when trying to start the session with Infor-
mation Exchange.

User Response: Contact the Customer Care Help Desk.

24220 Invalid reset field.

Explanation: Expedite Base used an invalid value for a field when trying to start the session 
with Information Exchange.

User Response: Contact the Customer Care Help Desk.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
426



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
24230 Invalid field on session start.

Explanation: Expedite Base used an invalid value for a field when trying to start the session 
with Information Exchange.

User Response: Contact the Customer Care Help Desk.

24270 Incorrect Information Exchange password.

Explanation: Your Information Exchange password is incorrect.

User Response: Correct the IEPASSWORD in the IDENTIFY command in the profile command 
file, BASEIN.PRO, or in the START command in the message command file, BASEIN.MSG, and 
retry the program. If you just changed your password, make sure you update the IDENTIFY or 
START command to reflect the new password.

24280 Invalid Information Exchange user ID.

Explanation: You specified an invalid user ID. Information Exchange does not recognize the 
account ID or user ID specified in the START command or the profile.

User Response: If a START command was used with ACCOUNT and USERID parameters, 
make sure they are correct. If the IEACCOUNT and IEUSERID are taken from the profile, make 
sure you specified them correctly in the IDENTIFY command in the profile command file, 
BASEIN.PRO. If the problem continues, contact the Customer Care Help Desk.

24290 Invalid new Information Exchange password.

Explanation: You are an Extended Security Option user, and you specified an invalid new 
Information Exchange password.

User Response: Correct the NIEPASSWORD parameter in the IDENTIFY command in the 
profile command file, BASEIN.PRO, or in the START command in the message command file, 
BASEIN.MSG, and retry the program. ESO passwords have special requirements. Refer to the 
product documentation for information about these requirements.

24300 Invalid password. user ID was revoked.

Explanation: You are an ESO user and sent three successive session starts to Information 
Exchange with incorrect passwords. The Information Exchange user ID has been revoked.

User Response: Contact your service administrator to request that your password be reset 
using Information Exchange Administration Services. Resetting the password resumes the user 
ID.

24310 New password is required.

Explanation: You are an ESO user and did not specify a new password. If the Information 
Exchange password for an ESO user is the same as the Information Exchange user ID, the ESO 
user must specify a new password.

User Response: Use the NIEPASSWORD parameter of the IDENTIFY command in the profile 
command file, BASEIN.PRO, or of the START command in the message command file, 
BASEIN.MSG, to change the password.
427



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
24320 Error starting session with Information Exchange.

Explanation: There was an error trying to start the session with Information Exchange.

User Response: Contact the Customer Care Help Desk.

24600 Information Exchange did not return a valid session end response.

Explanation: The Information Exchange session may not have ended.

User Response: Try to restart the session. If the problem persists, contact the Customer Care 
Help Desk.

24610 Information Exchange did not end the session due to an error.

Explanation: Information Exchange indicated that there was an error, and the session could 
not end properly.

User Response: Try to restart the session. If the problem persists, contact the Customer Care 
Help Desk.

PF key exit error  
This section describes the return code for a PF key exit error.

25000 EXIT KEY PRESSED.

Explanation: You pressed the defined exit key, EXITKEY on the SESSION command in 
BASEIN.PRO, and processing is not complete.

User Response: If you want to continue the interrupted processing, call IEBASE again. If you 
do not want to continue, you can reset the session using the RESET command line parameter on 
the IEBASE command. Before resetting the session, review the message response file, 
BASEOUT.MSG, to see which commands were processed successfully. Remove these 
commands from the message command file, BASEIN.MSG, so they are not processed again. 

Comm-Press error messages  
For Comm-Press error messages, see Appendix E, “Using data compression.’’

Internal communications errors 
This section describes the return codes for internal communications errors.

26401 Expedite Base encountered corrupted data.

Explanation: Expedite Base data control layer detected the data sent or received was 
corrupted. Expedite Base will end the session, redial and try again for as many times as allowed 
by the RECONNECT parameter on the TRANSMIT command in the profile command file, 

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
428



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
BASEIN.PRO. The default is 5 times. If this error is returned again, then Expedite Base could 
not recover from the problem by redialing. This error is often caused by a hardware problem on 
the workstation side.

User Response: Try another modem. Try another system. If the problem persists, contact the 
Customer Care Help Desk.

26402 A timeout occurred while Expedite Base was waiting to receive data.

Explanation: Expedite Base timed out while waiting to receive data from Information 
Exchange. Expedite Base will end the session, redial and try again for as many times as allowed 
by the RECONNECT parameter on the TRANSMIT command in the profile command file, 
BASEIN.PRO. The default is 5 times. If this error is returned again, then Expedite Base could 
not recover from the problem by redialing.

User Response: Wait and try the transmission again later. If the problem persists, contact the 
Customer Care Help Desk.

26403 Expedite base encountered an error processing data from Information 
Exchange.

Explanation: The data received should have ended with the chaining character C or L but did 
not. Expedite Base will end the session, redial and try again for as many times as allowed by the 
RECONNECT parameter on the TRANSMIT command in the profile command file, 
BASEIN.PRO. The default is 5 times. If this error is returned again, then Expedite Base could 
not recover from the problem by redialing.

User Response: Wait and try the transmission again later. If the problem persists, contact the 
Customer Care Help Desk.

26407 Expedite Base encountered corrupted data while receiving a file.

Explanation: Expedite Base data control layer detected the data received was corrupted. 
Expedite Base will end the session, redial and try again for as many times as allowed by the 
RECONNECT parameter on the TRANSMIT command in the profile command file, 
BASEIN.PRO. The default is 5 times. If this error is returned again then Expedite Base could not 
recover from the problem by redialing. This may indicate a hardware problem on the workstation 
side.

User Response: Try another modem. Try another system. If the problem persists, contact the 
Customer Care Help Desk.

26410 Expedite Base timed out while sending or receiving data from Information 
Exchange.

Explanation: Expedite Base was unable to continue communicating with the protocol 
converter. Expedite Base will end the session, redial and try again for as many times as allowed 
by the RECONNECT parameter on the TRANSMIT command in the profile command file, 
BASEIN.PRO. The default is 5 times. If this error is returned again, then Expedite Base could 
not recover from the problem by redialing.

User Response: Wait and try the transmission again later. If the problem persists, contact the 
Customer Care Help Desk.
429



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
26411 Expedite Base ran out of buffer space while encoding data to send.

Explanation: Expedite Base encodes 8-bit binary data to be sent over the 7-bit data 
connection. In the process, Expedite Base ran out of buffer space.

User Response: Try the transmission again. If the problem persists, contact the Customer Care 
Help Desk.

26412 Expedite Base ran out of buffer space while decoding data received.

Explanation: Expedite Base decodes the 8-bit binary data received over the 7-bit data 
connection. In the process, Expedite Base ran out of buffer space.

User Response: Try the transmission again. If the problem persists, contact the Customer Care 
Help Desk.

26805 Lost carrier.

Explanation: The carrier was lost during data transmission.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

26806 DCL error.

Explanation: A DCL error has occurred.

User Response: Retry the program. If the problem recurs, contact the Customer Care Help 
Desk.

26810 Program error.

Explanation: A program error has occurred.

User Response: Retry the program. If the problem recurs, contact the Customer Care Help 
Desk.

26897 Incorrect segment length on received data.

Explanation: The segment length, assigned by Information Exchange, was incorrect. This 
occurs for one of two reasons. Either DCL received data that was not in the expected format, or 
there was an SDIERR, an error from Information Exchange. These error messages are not sent 
with the length values.

• One possible cause of this problem is that you have specified the wrong product name in 
the PRODUCT parameter of the IDENTIFY command in BASEIN.PRO.

• A second possible cause is that the Service Manager profile has the wrong LU name 
defined for the product INFOEXCH. If the problem persists, contact the Customer Care 
Help Desk to check the Service Manager profile for the correct LU name.

• A third cause can be the modem echoing the DCL frames back to the work station 
instead of sending them over the asynchronous line. This is due to either a hardware 
problem with the modem or async adapter, or that the modem is in command state, some 
modems return to command state when the line is dropped.
430



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
Retry the program. Try the system with another communications program. If this program fails, 
have the modem and PC tested for hardware problems. If the other program works, contact the 
Customer Care Help Desk.

User Response: If the steps itemized above do not stop the problem from occurring, contact 
the Customer Care Help Desk.

26899 Missing chaining indicator.

Explanation: The record chaining indicator was missing from the data.

User Response: Follow the steps described for 26897.

26986 DCL received an EOT when not expecting one.

Explanation: DCL received an end-of-transmission, EOT, character when one was not 
expected. You may see this if the modem goes into command state and begins to echo characters 
back to the PC. DCL must be in a particular state and send an EOT character to the modem. If the 
modem echoes the EOT back to the PC, this error will occur. Or, the modem is online but is 
echoing frames back to the PC instead of sending the frame to the network communications 
gateway.

User Response: Retry the program. If it continues to fail, try another modem. If the new 
modem works, have the old modem checked for hardware problems. If the new modem fails with 
the same results, have the async adapter on the PC checked or replaced. If the problem persists, 
contact the Customer Care Help Desk.

26987 DCL received a BID when not expecting one.

Explanation: DCL received an inquiry, BID, character when one was not expected. You may 
see this if the modem goes into command state and begins to echo characters back to the PC. 
DCL must be in a particular state and send a BID character to the modem. If the modem echoes 
the BID back to the PC, this error will occur.

User Response: Retry the program. If it continues to fail, try another modem. If the new 
modem works, have the old modem checked for hardware problems. If the new modem fails with 
the same results, have the async adapter on the PC checked or replaced. If the problem persists, 
contact the Customer Care Help Desk.

26988 The network communications gateway has prematurely ended the session.

Explanation: Expedite Base did not expect the network communications gateway to end the 
session.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

26989 An internal buffer has been overrun.

Explanation: Expedite Base receives data from the modem into an internal buffer. If the data 
received exceeds the size of the buffer, then this error will occur. Expedite Base and the network 
communications gateway have precautions programmed to prevent this from happening.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.
431



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
26990 A series of NAKs has occurred.

Explanation: DCL has encountered a situation where 10 frames of data with CRC characters 
attached have been sent to the network communications gateway and it indicates the CRCs are 
not correct by responding with a NAK, negative acknowledgment. This is almost always caused 
by hardware problems. The frame of data is altered by the modem or async adapter and the CRCs 
do not match.

User Response: Retry the program. If it continues to fail, try another modem. If the new 
modem works, have the old modem checked for hardware problems. If the new modem fails with 
the same results, have the async adapter on the PC checked or replaced. If the problem persists, 
contact the Customer Care Help Desk.

26991 A series of NAKs has occurred.

Explanation: DCL has encountered a situation where 10 frames of data with CRC characters 
attached have been received from the network communications gateway and the DCL indicates 
the CRCs are not correct by responding with a NAK, negative acknowledgment. This would be 
caused by hardware problems. The frame of data may have been altered by the modem or async 
adapter, and the CRCs do not match.

User Response: Retry the program. If it continues to fail, try another modem. If the new 
modem works, have the old modem checked for hardware problems. If the new modem fails with 
the same results, have the async adapter on the PC checked or replaced. If the problem persists, 
contact the Customer Care Help Desk.

26992 DCL received data without an ETX or ETB control character.

Explanation: DCL was expecting to receive a frame of data with the ETX or ETB, End of Text 
or End of Text Block, control character at the end. This is caused by a modem hardware problem 
in most cases. The modem may be echoing partial frames of data back to the PC.

User Response: Retry the program. If it continues to fail, try another modem. If the new 
modem works, have the old modem checked for hardware problems. If the new modem fails with 
the same results, have the async adapter on the PC checked or replaced. If the problem persists, 
contact the Customer Care Help Desk.

26993 DCL did not receive a response when one was expected.

Explanation: DCL was expecting a response but didn’t receive one.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

26994 DCL has encountered a BID-WAK loop.

Explanation: DCL sends BIDs to the network communications gateway, but receives only 
Wait Acknowledgments, WAKs. This usually occurs when the user increased the transmission 
block size above 1024.

User Response: Try the default block size of 1024. If the problem persists, contact the 
Customer Care Help Desk.
432



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
26995 DCL has encountered a BID-BID loop.

Explanation: DCL gets a BID response to the BID it sends. This can be caused by a modem 
which has returned to command state and is echoing the characters back to the workstation. Or, it 
can be a hardware problem.

User Response: Retry the program. If it continues to fail, try another modem. If the new 
modem works, have the old modem checked for hardware problems. If the new modem fails with 
the same results, have the async adapter on the PC checked or replaced. If the problem persists, 
contact the Customer Care Help Desk.

26996 Timed-out while waiting for a response.

Explanation: DCL timed-out while waiting for a response from the network communications 
gateway. This can occur if the line is dropped and the operating system does not return the lost-
carrier condition to the program.

User Response: Retry the program. If the problem persists, it may be that the Asynchronous 
Relay is down. Try the program again in about 30 minutes. If the problem still occurs, contact the 
Customer Care Help Desk.

26997 DCL communications error encountered with network communications 
gateway.

Explanation: DCL received an unexpected control character, or no response at all when one 
was expected.

User Response: Retry the program. If it continues to fail, try another modem. If the problem 
still persists, contact the Customer Care Help Desk.

26998 DCL error.

Explanation: DCL was inserting transparency characters in the data and the length was 0.

User Response: Contact the Customer Care Help Desk.

26999 DCL error.

Explanation: A DCL error has occurred.

User Response: Retry the program. If the problem reoccurs, contact the Customer Care Help 
Desk.

Session errors 
This section describes the return codes for session errors.

28000 Warnings generated for the command.

Explanation: This return code indicates that warning messages were generated during the 
command, but the command was able to complete.

User Response: Check the WARNING records in the message response file BASEOUT.MSG, 
for details.
433



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
28010 Information Exchange session completed normally but not all requests were 
processed.

Explanation: The Information Exchange session completed normally, but not all of the 
requests in the message command file, BASEIN.MSG, processed, or some requests generated 
warnings.

User Response: Check the message response file, BASEOUT.MSG, to see which requests did 
not process normally. Correct those requests in a new BASEIN.MSG and retry the program.

28020 Information Exchange session completed normally but an error occurred 
during disconnect.

Explanation: All the commands in the message command file completed. While Expedite 
Base was disconnecting from the network, it encountered an error. Most likely, there is a problem 
with one of the script files.

User Response: The SESSIONEND record in baseout.msg will be followed by a WARNING 
record, ERRDESC record, and ERRTEXT records explaining what the error was and where it 
occurred. Correct the error before running IEBASE again.

28100 Query response indicates warning.

Explanation: Information Exchange found one or more errors in the QUERY command but 
was still able to process the command. Expedite Base may not write AVAILABLE records for 
some or all of the messages in your mailbox.

User Response: Check the error messages in your mailbox to see what caused the error. If 
needed, correct the error and retry the command.

28120 GETMEMBER response indicates a warning.

Explanation: The response from Information Exchange to the GETMEMBER command shows 
that there was a warning while processing the command.

User Response: Make sure the library and member that you are trying to retrieve exist, and 
that you have access to them. If there is a system error message in your mailbox, retrieve it or 
view it via Information Exchange Administration Services to determine what caused the error. 
Correct the problem and try the command again.

28140 Audit response indicates warning.

Explanation: Information Exchange found one or more errors in the AUDIT command but 
was still able to process the command. However, the audit records in your mailbox may be 
different than requested.

User Response: Check the error messages in your mailbox to see what caused the error. If the 
audit file in the mailbox does not meet your requirements, correct the error and retry the program.

28141 Audit response indicates error.

Explanation: Information Exchange found one or more errors in the AUDIT command and 
was unable to process the command.
434



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Check the error messages in your mailbox to see what caused the error. 
Correct the error and retry the command. No audit file has been placed in your mailbox.

28160 An unexpected error occurred while processing a VERIFY command.

Explanation: An unexpected error occurred while processing a VERIFY command. Because 
Expedite Base was unable to use the results of the VERIFY command, it proceeded to send the 
data to Information Exchange.

User Response: Check your mailbox for system error messages that may have been generated 
if your send request was invalid. You can also check the mailbox for acknowledgments, if you 
requested any, to verify whether the data was sent or not.

28170 LISTLIBRARIES response indicates a warning.

Explanation: Information Exchange found one or more errors in the LISTLIBRARIES command 
but was still able to process the command. Expedite Base for Windows may not write 
LIBRARYLIST records for some or all of the libraries you have access to.

User Response: Check the error messages in your mailbox to see what caused the error. If 
needed, correct the error and retry the command.

28171 There are more files to be received.

Explanation: The session ended successfully, but there are more files in the mailbox to be 
received.

User Response: Process the data already received and run Expedite Base again to receive the 
additional data. Refer to Chapters 6 and 7 for more information on session-level recovery. If you 
switch to checkpoint-, user-, or file-level recovery, you will be able to receive all the files in your 
mailbox in a single session without encountering the 28171 return code.

28175 LISTMEMBERS response indicates a warning.

Explanation: Information Exchange found one or more errors in the LISTMEMBERS command 
but was still able to process the command. Expedite Base for Windows may not write 
MEMBERLIST records for some or all the libraries you have access to.

User Response: Check the error messages in your mailbox to see what caused the error. If 
needed, correct the error and retry the command.

28180 PURGE response indicates an error.

Explanation: An unexpected error occurred while trying to process the PURGE command.

User Response: Retry the program. If the problem persists, contact the Customer Care Help 
Desk.

28190 Invalid common data header received.

Explanation: Expedite Base received an invalid Common Data Header. The data was received 
and processed as if no CDH was received.
435



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
User Response: Check that the file was received as expected. You may wish to inform the 
sender that the interface sent an invalid CDH. If the sending interface was an Expedite Base 
product, contact the Customer Care Help Desk.

28200 COMMIT command only valid after a SEND, SENDEDI, or PUTMEMBER 
command.

Explanation: COMMIT command only valid after a SEND, SENDEDI, or PUTMEMBER has been 
specified.

User Response: A COMMIT command was specified but there was no SEND, SENDEDI or 
PUTMEMBER command preceding it. The COMMIT command did not initiate a commit.

29998 MODEM command processor asked to stop.

Explanation: The modem script processor encountered some error and the return code was set 
within the modem script file to stop IEBASE processing.

User Response: Determine why the modem script processor file asked to stop. The trace file, 
IEBASE.TRC, may be helpful in determining the problem. Specify ’y’ for cnnct on the TRACE 
command in BASEIN.PRO to turn on the trace for the modem script processor. Correct the error 
and retry the program.

Unexpected program errors 
This section describes the return codes for unexpected program errors.

29999 Session end response failure.

Explanation: Expedite did not receive a session end response from Information Exchange, or 
a communication failure occurred upon receiving the session end response.

User Response: Follow these steps after a session that fails with 29999 to see if the previous 
session has completed.

1. Specify AUTOSTART(N), AUTOEND(N) and RECOVERY(S) on your TRANSMIT command 
in the Expedite Base profile.

2. Create an input file containing START and END records.

An example follows:

START  CHECK(Y);
END;

Do not specify any other commands in the input file if you specify CHECK(Y) on the 
session start command.

3. Run Expedite Base. No data will be transferred in the above example, and you will not be 
charged for this inquiry.

4. Examine the output file to check the LASTSESS parameter value on the STARTED record.

lastsess(0) Indicates that the previous session was successful. No further recovery is 
required.
436



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
If Expedite Base reported the 29999 Session End return code for a session, you should switch to 
checkpoint-, file-, or user-level recovery instead of session-level recovery for future sessions 
with a similar number of commands.

30006 Invalid common name on returned certificate.

Explanation: The certificate returned during the SSL handshake contains an invalid common 
name.

User Response: The common name that is returned has been written to  IEBASE.TRC file if 
you have requested a LINK trace to be created.  To generate a LINK trace specify LINK(Y) in 
the TRACE command in basein.pro. Rerun the session and send the resulting IEBASE.TRC to 
support for help in determining the cause of this error.

30007 Un-trusted certificate received.

Explanation: The certificate returned during the SSL handshake matches a certificate listed in 
the certs.fil file.

User Response:  Contact Customer Care for instructions on how to proceed.

30008 User not allowed through the Secure front End (SFE) Gateway.

Explanation: The user has no access privileges to the Secure Front End Gateway.

User Response:  Check that you have specified the correct IP address for the Secure Front End 
Gateway that you are allowed to communicate with.  If you believe that you have the correct IP 
address, contact help desk  for how to proceed.

30009 Account/Userid does not match certificate’s account/userID.

Explanation: The user information found in the X.509 certificate does not match the IE 
system.account.userid that was specified on the IDENTIFY or START command.

User Response:  Make sure that the information you gave when you requested the certificate 
matches the IE system, account, and userID that you have requested on the IDENTIFY or 
START command. Correct the error and retry the program.

30010 Invalid Certificate.

Explanation: The certificate is not valid for use on this Secure Front End Gateway

User Response:  Make sure that the certificate specified was generated by the PKI Profile 
Server. Correct the error and retry the program.

30011 Unable to negotiate security specifications.

Explanation: The SSL negotiation did not complete with a satisfactory protection level for the 
Secure Front End Gateway.

User Response: Contact GXS Community Support for instructions on how to proceed.

lastsess(1) Indicates that the previous session was not successful.
437



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
30012 Connection Temporarily refused.

Explanation: The connection to the Secure Front End Gateway has been temporarily refused.

User Response: Please try again later.  If you continue to experience the problem, contact 
Customer Care for instructions on how to proceed.

31000 Unexpected condition found.

Explanation: Expedite Base has encountered an unexpected condition.

User Response: Contact the Customer Care.  You will be asked to FAX or send your 
IEBASE.TRC file to the network for problem determination.

31360 Error indication received from Information Exchange.

Explanation: Expedite Base received an unexpected error from Information Exchange.

User Response: Wait and retry the program later. Make sure there is not another user using this 
user ID. Make sure you have specified the correct product name in the PRODUCT parameter on 
the DIAL command. If you omit the PRODUCT parameter, or leave it blank, it defaults to 
INFOEXCH. Do not change the default unless instructed to do so by network personnel. Also, 
check to see that you are not trying to send more than 1000 files using session-level recovery. If 
the problem persists, contact the Customer Care Help Desk.

31400 Program interrupted.

Explanation: A control-break or re-IPL command interrupted Expedite Base. This error will 
not appear in your output file but may appear on the display as the restart return code.

User Response: No response needed. This is only display information.

31810 File operation failed on file.

Explanation: A checkpoint recovery file was damaged.

User Response: Check your disk and make sure there are no I/O problems. Make sure you 
have specified FILES=60 in your CONFIG.SYS file. Reset the session and retry the program. If 
the problem persists, contact the Customer Care Help Desk. You will be asked to FAX or send 
the trace file, IEBASE.TRC, to the network for problem determination.

32000 Expedite Base encountered an unexpected condition.

Explanation: Expedite Base has encountered an unexpected condition and is unable to 
continue.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
438



Appendix A. Expedite Base for Windows error codes and messages

Expedite Base for Windows return codes
User Response: Reset the session and retry the program. If the problem persists, contact the 
Customer Care Help Desk. You will be asked to FAX or send the trace file, IEBASE.TRC, to the 
network for problem determination.

32401 Unsupported version of operating system.

Explanation: This version of the operating system is not supported by Expedite Base for 
Windows.

User Response: Install the required version of the operating system.

CAUTION: If you reset the session using the RESET command line parameter, you 
will no longer be able to continue the previous session. Failure to modify the message 
command file, BASEIN.MSG, before resetting the session may result in some data 
being lost or duplicated.
439



Expedite Base for Windows Programming Guide

Expedite Base for Windows return codes
440



© Copyright GXS, Inc. 1998, 2005
Appendix B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Common data header

Information Exchange interfaces can use a common data header (CDH) to communicate detailed 
information about files and messages to other interfaces and to Information Exchange. Expedite 
Base for Windows builds a CDH for every file sent, so you never need to build a CDH yourself. 
Expedite Base for Windows also recognizes CDHs received from other interfaces.

The CDH provides details (such as file name and carriage-return and line-feed options) that let 
the receiving interface reconstruct a received message into its original format. It also makes more 
information available to the recipient of a file.

The information in the CDH is presented to you in the form of parameters in the RECEIVED or 
AVAILABLE records. See Information Exchange Messages and Formats for more information 
on the CDH.
441



Expedite Base for Windows Programming Guide
442



© Copyright GXS, Inc. 1998, 2005
Appendix C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reserved file names and user classes

The following sections list the Expedite Base for Windows reserved file names and user classes.

Reserved file names for PATH statement 
The following are Expedite Base for Windows reserved file names that reside in a directory 
specified in the PATH statement. 

File name File description

expsetup.exe The executable file to run the modem setup program.

iebase.exe The Expedite Base for Windows main executable file.

iebasepo32.dll The file that checks the message response file, baseout.msg, for 
compressed files, and verifies that the appropriate decompression 
software exists.

iebasepr32.dll The file that checks the COMPRESS() parameter, and verifies that the 
appropriate compression software exists.

iebasec32.dll A utility dynamic link library required for Expedite Base for Windows.

NOTE: If you are using supported data compression software, see Appendix E, 
“Using data compression,’’ for additional reserved names.
443



Expedite Base for Windows Programming Guide

Reserved file names for PATH parameter
Reserved file names for PATH parameter 
The following are Expedite Base for Windows reserved file names contained in the directory 
specified in the PATH= command line parameter.

File name File description

basein.msg The message command file.

baseout.msg The message response file.

tempout.msg The temporary message response file.

basein.pro The profile command file.

baseout.pro  The profile response file.

ediwork.fil The file Expedite Base for Windows uses to keep track of which EDI 
envelopes are sent and which are not sent when using SENDEDI with 
VERIFY(C) or VERIFY(G) specified.

iebase.pro The internal profile in which Expedite Base for Windows stores 
profile command values.

iebase.trc The trace file in which Expedite Base for Windows places all trace 
information other than the LINK trace.

rcvfiles.fil The file containing the names of all files Expedite Base for Windows 
receives during an Information Exchange session.

rcvofset.fil The file Expedite Base for Windows uses to track files received 
since the last checkpoint.

session.fil The control file Expedite Base for Windows uses to restart an Infor-
mation Exchange session.
444



Appendix C. Reserved file names and user classes

Reserved file names for IEPATH parameter
Reserved file names for IEPATH parameter  
The following are Expedite Base for Windows reserved file names contained in the directory 
specified by the IEPATH parameter in the SESSION profile command.

File name File description

cnnct.scr The script file Expedite Base for Windows uses to connect to the 
network.

direct.fil The file Expedite Base for Windows uses to connect to a customized 
Service Manager logon screen. This file is used only if you have 
migrated from expEDIte/PC and you are using the old style connect 
files.

discnnct.scr The script file Expedite Base for Windows uses to disconnect from 
the network.

display.scr The script file Expedite Base for Windows uses to display the 
transmit picture and status information.

ecnnct.scr A sample connect script for use in Austria, Belgium, Finland, 
France, Germany, Israel, Italy, Netherlands, and Sweden.

edcnnct.scr A sample disconnect script for use in Austria, Belgium, Finland, 
France, Germany, Israel, Italy, Netherlands, and Sweden.

errormsg.fil The file containing Expedite Base for Windows error message text.

errormsg.cmp The file containing CommPress error message text.

errortxt.fil The file containing explanations and user response information for 
all error messages.

hostname.fil The file that contains the address used to communicate with the 
network using TCP/IP. 

ibm3270.xlt A translate table that performs ASCII - EBCDIC translation that 
matches the IBM eNetwork Personal Communications for Windows 
4.2 program.

noxlate.xlt A translate table that provides no translation.

qualtbl.tbl The file Expedite Base for Windows uses to determine which desti-
nation table to use to translate EDI addresses to Information 
Exchange addresses.

scnnct.scr A sample connect script for use in Switzerland and Slovenia.

sdcnnct.scr A sample disconnect script for use in Switzerland and Slovenia.

second.fil The file Expedite Base for Windows uses to connect to a secondary 
network. This file is used only if you have migrated from expEDIte/
PC and you are using the old style connect files.

tracemsg.fil The file Expedite Base for Windows uses to change the language of 
trace messages.

ucnnct.scr A sample connect script for use in Denmark, Norway, South Africa, 
Spain, and the United Kingdom.
445



Expedite Base for Windows Programming Guide

Reserved file name for current directory
Reserved file name for current directory  
The following Expedite Base for Windows reserved file name is contained in the current 
directory.

Reserved user classes 
The following are Expedite Base for Windows reserved user classes.

udcnnct.scr A sample disconnect script for use in Denmark, Norway, South 
Africa, Spain, and the United Kingdom.

xcnnct.fil The file containing modem dial and connect instructions.

xdcnnct.fil The file containing modem disconnect instructions.

File name File description

modems.lst The file containing modem information used by the modem setup 
program.

ffmsg001 The user class for a free-format message.

file0001 The user class for file inquiries used with expEDIte/PC. File inquiries 
are not created with Expedite Base for Windows.

#ec The default user class for UCS data.

#ee The default user class for EDIFACT data.

#eu The default user class for UN/TDI data.

#e2 The default user class for X12 data.

File name File description
446



© Copyright GXS, Inc. 1998, 2005
Appendix D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Information Exchange translate table

This appendix provides the Information Exchange ASCII-to-EBCDIC and EBCDIC-to-ASCII 
translate tables.

ASCII TO EBCDIC 
When ASCII data is sent through Expedite Base, it is translated into EBCDIC using this table 
and stored in Information Exchange as EBCDIC characters.

ASCII: EBCDIC: Character:

00 00 NUL
01 01 SOH
02 02 STX
03 03 ETX
04 04 EOT (Disconnect)
05 05 ENQ (Terminate block)
06 06 ACK (Terminate block)
07 07 BEL
08 08 BS
09 09 HT
0A 0A LF
0B 0B VT
0C 0C FF
0D 0D CR (Line end)
0E 0E SO
0F 0F SI
10 10 DLE
447



Expedite Base for Windows Programming Guide

ASCII TO EBCDIC
11 11 DC1/XON
12 12 DC2
13 13 DC3/XOFF (Terminate)
14 14 DC4
15 15 NAK (NACK)
16 16 SYN (SYNCH)
17 17 ETB
18 18 CAN
19 19 EM (ENDBLOCK)
1A 1A SUB
1B 1B ESC
1C 1C FS (HEXBEGIN)
1D 1D GS (REPEAT)
1E 1E RS
1F 1F US (HEXEND)
20 40 (blank)
21 5A !
22 7F "
23 7B #
24 5B $
25 6C %
26 50 &
27 7D ’
28 4D (
29 5D )
2A 5C *
2B 4E +
2C 6B ,
2D 60 -
2E 4B .
2F 61 /
30 F0 0
31 F1 1
32 F2 2
33 F3 3
34 F4 4
35 F5 5
36 F6 6

ASCII: EBCDIC: Character:
448



Appendix D. Information Exchange translate table

ASCII TO EBCDIC
37 F7 7
38 F8 8
39 F9 9
3A 7A :
3B 5E ;
3C 4C <
3D 7E =
3E 6E >
3F 6F ?
40 7C @
41 C1 A
42 C2 B
43 C3 C
44 C4 D
45 C5 E
46 C6 F
47 C7 G
48 C8 H
49 C9 I
4A D1 J
4B D2 K
4C D3 L
4D D4 M
4E D5 N
4F D6 0
50 D7 P
51 D8 Q
52 D9 R
53 E2 S
54 E3 T
55 E4 U
56 E5 V
57 E6 W
58 E7 X
59 E8 Y
5A E9 Z
5B AD [  Open square bracket
5C E0 \  Reverse slash

ASCII: EBCDIC: Character:
449



Expedite Base for Windows Programming Guide

ASCII TO EBCDIC
5D BD  Close bracket
5E 5F  Circumflex / Not
5F 6D _  Underscore
60 79 ‘  Grave Accent
61 81 a
62 82 b
63 83 c
64 84 d
65 85 d
66 86 f
67 87 g
68 88 h
69 89 i
6A 91 j
6B 92 k
6C 93 l
6D 94 m
6E 95 n
6F 96 o
70 97 p
71 98 q
72 99 r
73 A2 s
74 A3 t
75 A4 u
76 A5 v
77 A6 w
78 A7 x
79 A8 y
7A A9 z
7B C0 {  Open brace
7C 4F | Vertical bar
7D D0 } Close brace
7E A1 ~  Tilde
7F 2F DEL (Terminate block)
80 20
81 21
82 22

ASCII: EBCDIC: Character:
450



Appendix D. Information Exchange translate table

ASCII TO EBCDIC
83 23
84 24
85 3D
86 2E
87 26
88 28
89 29
8A 2A
8B 2B
8C 2C
8D 2D
8E 25
8F 27
90 30
91 31
92 3F
93 33
94 34
95 35
96 36
97 32
98 38
99 39
9A 3A
9B 3B
9C 37
9D 3C
9E 3E
9F E1
A0 41
A1 42
A2 43
A3 44
A4 45
A5 46
A6 47
A7 48
A8 49

ASCII: EBCDIC: Character:
451



Expedite Base for Windows Programming Guide

ASCII TO EBCDIC
A9 51
AA 52
AB 53
AC 54
AD 55
AE 56
AF 57
B0 58
B1 59
B2 62
B3 63
B4 64
B5 65
B6 66
B7 67
B8 68
B9 69
BA 70
BB 71
BC 72
BD 73
BE 74
BF 75
C0 76
C1 77
C2 78
C3 80
C2 78
C3 80
C4 8A
C5 8B
C6 8C
C7 8D
C8 8E
C9 8F
CA 90
CB 9A
CC 9B

ASCII: EBCDIC: Character:
452



Appendix D. Information Exchange translate table

ASCII TO EBCDIC
CD 9C
CE 9D
CF 9E
D0 9F
D1 A0
D2 AA
D3 AB
D4 AC
D5 4A
D6 AE
D7 AF
D8 B0
D9 B1
DA B2
DB B3
DC B4
DD B5
DE B6
DF B7
E0 B8
E1 B9
E2 BA
E3 BB
E4 BC
E5 6A
E6 BE
E7 BF
E8 CA
E9 CB
EA CC
EB CD
EC CE
ED CF
EE DA
EF DB
F0 DC
F1 DD
F2 DE

ASCII: EBCDIC: Character:
453



Expedite Base for Windows Programming Guide

EBCDIC TO ASCII
EBCDIC TO ASCII  
When EBCDIC data is received through Expedite Base, it is translated into ASCII using this 
table.

F3 DF
F4 EA
F5 EB
F6 EC
F7 ED
F8 EE
F9 EF
FA FA
FB FB
FC FC
FD FD
FE FE
FF FF

EBCDIC: ASCII: CHARACTER:

00 00 NUL

01 01 SOH

02 02 STX

03 03 ETX

04 04 EOT (Disconnect)

05 05 ENQ (Terminate block)

06 06 ACK (Terminate block)

07 07 BEL

08 08 BS

09 09 HT

0A 0A LF

OB OB VT

OC OC FF

OD OD CR (Line end)

0E 0E S0

0F 0F SI

10 10 DLE

ASCII: EBCDIC: Character:
454



Appendix D. Information Exchange translate table

EBCDIC TO ASCII
11 11 DC1/XON

12 12 DC2

13 13 DC3/X0FF (Terminate)

14 14 DC4

15 15 NAK (NACK)

16 16 SYN (SYNCH)

17 17 ETB

18 18 CAN

19 19 EM (ENDBLOCK)

1A 1A SUB

1B 1B ESC

1C 1C FS (HEXBEGIN)

1D 1D GS (REPEAT)

1E 1E RS

1F 1F US (HEXEND)

20 80

21 81

22 82

23 83

24 84

25 8E

26 87

27 8F

28 88

29 89

2A 8A

2B 8B

2C 8C

2D 8D

2E 86

2F 7F DEL (Terminate Block)

30 90

31 91

EBCDIC: ASCII: CHARACTER:
455



Expedite Base for Windows Programming Guide

EBCDIC TO ASCII
32 97

33 93

34 94

35 95

36 96

37 9C

38 98

39 99

3A 9A

3B 9B

3C 9D

3D 85

3E 9E

3F 92

40 20 SP / BLANK

41 A0

42 A1

43 A2

44 A3

45 A4

46 A5

47 A6

48 A7

49 A8

4A D5

4B 2E .

4C 3C <

4D 28 (

4E 2B +

4F 7C |

50 26 &

51 A9

52 AA

EBCDIC: ASCII: CHARACTER:
456



Appendix D. Information Exchange translate table

EBCDIC TO ASCII
53 AB

54 AC

55 AD

56 AE

57 AF

58 B0

59 B1

5A 21 !

5B 24 $

5C 2A *

5D 29 )

5E 3B ;

5F 5E ¬  CIRCUMFLEX / NOT

60 2D -  HYPHEN / MINUS

61 2F /

62 B2

63 B3

64 B4

65 B5

66 B6

67 B7

68 B8

69 B9

6A E5

6B 2C ,

6C 25 %

6D 5F _  UNDERSCORE

6E 3E >

6F 3F ?

70 BA

71 BB

72 BC

73 BD

EBCDIC: ASCII: CHARACTER:
457



Expedite Base for Windows Programming Guide

EBCDIC TO ASCII
74 BE

75 BF

76 C0

77 C1

78 C2

79 60 ‘  GRAVE ACCENT

7A 3A :

7B 23 #

7C 40 @

7D 27 ’

7E 3D =

7F 22 "

80 C3

81 61 a

82 62 b

83 63 c

84 64 d

85 65 e

86 66 f

87 67 g

88 68 h

89 69 i

8A C4

8B C5

8C C6

8D C7

8E C8

8F C9

90 CA

91 6A j

92 6B k

93 6C l

94 6D m

EBCDIC: ASCII: CHARACTER:
458



Appendix D. Information Exchange translate table

EBCDIC TO ASCII
95 6E n

96 6F o

97 70 p

98 71 q

99 72 r

9A CB

9B CC

9C CD

9D CE

9E CF

9F D0

A0 D1

A1 7E ~

A2 73 s

A3 74 t

A4 75 u

A5 76 v

A6 77 w

A7 78 x

A8 79 y

A9 7A z

AA D2

AB D3

AC D4

AD 5B  OPEN BRACKET

AE D6

AF D7

B0 D8

B1 D9

B2 DA

B3 DB

B4 DC

B5 DD

EBCDIC: ASCII: CHARACTER:
459



Expedite Base for Windows Programming Guide

EBCDIC TO ASCII
B6 DE

B7 DF

B8 EO

B9 E1

BA E2

BB E3

BC E4

BD 5D

BE E6

BF E7

C0 7B {  OPEN BRACE

C1 41 A <UPPERCASE>

C2 42 B

C3 43 C

C4 44 D

C5 45 E

C6 46 F

C7 47 G

C8 48 H

C9 49 I

CA E8

CB E9

CC EA

CD EB

CE EC

CF ED

D0 7D }  CLOSE BRACE

D1 4A J

D2 4B K

D3 4C L

D4 4D M

D5 4E N

D6 4F 0

EBCDIC: ASCII: CHARACTER:
460



Appendix D. Information Exchange translate table

EBCDIC TO ASCII
D7 50 P

D8 51 Q

D9 52 R

DA EE

DB EF

DC FO

DD F1

DE F2

DF F3

E0 5C \  REVERSE SLASH

E1 9F

E2 53 S

E3 54 T

E4 55 U

E5 56 V

E6 57 W

E7 58 X

E8 59 Y

E9 5A Z

EA F4

EB F5

EC F6

ED F7

EE F8

EF F9

F0 30 0

F1 31 1

F2 32 2

F3 33 3

F4 34 4

F5 35 5

F6 36 6

F7 37 7

EBCDIC: ASCII: CHARACTER:
461



Expedite Base for Windows Programming Guide

EBCDIC TO ASCII
F8 38 8

F9 39 9

FA FA

FB FB

FC FC

FD FD

FE FE

FF FF

EBCDIC: ASCII: CHARACTER:
462



© Copyright GXS, Inc. 1998, 2005
Appendix E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using data compression 

Expedite Base for Windows provides integrated data compression and decompression through 
the Comm-Press product, which may not be available in all countries.

Compression reduces the size of the files that are transmitted through Information Exchange. 
Significant savings in network charges and transmission time are possible when using the data 
compression supplied by Comm-Press, Inc.

In the United States, you can contact your sales representative for Comm-Press product ordering 
information.

When you use data compression, some Expedite Base for Windows parameters are impacted, and 
session restarts may have to be handled differently. These considerations are described in this 
appendix. 

Understanding the Comm-Press files used with Expedite Base for 
Windows 

The iebasec32.dll, iebase.exe, iebasepr32.dll, and iebasepo32.dll programs and the errormsg.cmp 
error message file are shipped as part of the basic Expedite Base for Windows product.

The following files are also provided when you use the Comm-Press product with Expedite Base 
for Windows. These are reserved file names, as described in “Reserved file names and user 
classes” on page 443.

■ inmsgp32.dll

This compression program reads the basein.msg file, compresses the appropriate files based 
on the COMPRESS(Y) and COMPRESS(T) parameters, and builds a baseinc.msg file 
reflecting the location of the compressed files for transmission. This file must be in the same 
subdirectory as the other Expedite Base for Windows files.

NOTE: When using COMPRESS(Y) or COMPRESS(T), both the sender and receiver of 
compressed data must have the licensed Comm-Press product in order to compress and 
decompress the data.
463



Expedite Base for Windows Programming Guide

Understanding the Comm-Press files used with Expedite Base for Windows
■ outmsgp32.dll

This decompression program reads the baseout.msg file after the iebaser program has 
received the files, and then decompresses any received compressed files. This file must be in 
the same subdirectory as the other Expedite Base for Windows files.

These files are located in the \expedite subdirectory on the Comm-Press installation diskette. To 
install the Comm-Press files, change to the subdirectory where you previously installed Expedite 
Base for Windows and type:

copy a:\expedite\*.*

The following temporary files are created when using Expedite Base for Windows to compress 
files:

■ baseinc.msg

The inmsgp program builds this file as files are compressed. The baseinc.msg file contains 
all the entries found in basein.msg, plus the name and location of the corresponding 
compressed files. The iebaser program reads baseinc.msg to determine what commands to 
process. The baseinc.msg file is deleted upon successful completion of Expedite Base for 
Windows processing. However, if you are using a data recovery method other than session-
level recovery and your Information Exchange session does not complete successfully, 
baseinc.msg is not deleted, and must remain unchanged for successful recovery processing.

■ baseinr.msg

This file is used in recovery situations to synchronize basein.msg and baseinc.msg. It is 
deleted after inmsgp processing ends successfully.

■ baseoutr.msg

This file is used during outmsgp processing. It is deleted when outmsgp processing ends 
successfully.

■ baseoutc.msg

When a data compression error condition occurs during inmsgp and outmsgp processing, 
baseoutc.msg contains the error message text.

■ iecomp.trc

This file is created when BASE(Y) is specified on the TRACE command.

■
~IEn and ~CMn files

These temporary files have names that begin with the characters "~IE" or "~CM" and are 
created in the current directory. However, you may set the TMP environment variable to 
specify an alternate directory to contain the temporary files.

Normally, the temporary files are deleted as part of successful Expedite Base for Windows 
processing. However, when your Information Exchange session does not complete successfully, 
the temporary files remain. You should not delete, move, or rename these files. You should 
instead complete the Information Exchange session or allow RESET processing to remove the 
temporary files.
464



Appendix E. Using data compression

Compressing files with COMPRESS(Y)
Compressing files with COMPRESS(Y) 
When COMPRESS(Y) is included on the SEND or SENDEDI command and inmsgp is available, the 
specified file is compressed prior to transmission. If the file to be sent contains multiple EDI 
envelopes, all envelopes are sent compressed (the EDI header itself is not compressed). 
Additional parameters appear in the baseout.msg file along with the echoed SEND command:

COMSW(COMM-PRESS)  COMVER(301)  COMFILE(\~IEn)

where COMSW refers to the software providing the compression, COMVER refers to the version 
and release of that software, and COMFILE refers to the directory and file name for the 
compressed file to be sent. This information is also contained in the CDH, to allow proper 
decompression at the receiving locations.

Compressing files with COMPRESS(T) 
When COMPRESS(T) is included on the SEND or SENDEDI command, the specified file is 
compressed prior to transmission only if the SENDER, RECEIVER, and COMPRESS param-
eters are listed in the cplookup.tbl file. This file defines a series of paired receivers and senders, 
and for each pair indicates whether compression should be performed.

Each entry in the compression lookup table must follow this format:

sender(sender) receiver(receiver) compress(y|n);

sender
Indicates the account and user ID or EDI source of a sender.

receiver
Indicates the account and user ID, alias and aliasname, listname, or EDI destination of a 
receiver.

compress
Indicates whether compression should be performed for this sender/receiver pair.

The following is an example of a compression lookup table:

SENDER(acct1    user01)  RECEIVER(acct1    user02)  COMPRESS(y);
SENDER(acct1    user01)  RECEIVER(alias01 alias02)  COMPRESS(y);
SENDER(acct1    user01)  RECEIVER(acct1    user03)  COMPRESS(y);
SENDER(acct1    user01)  RECEIVER(listname02)       COMPRESS(y);

For each SEND command, the inmsgp program identifies the sender from a START command in 
basein.msg or from an IDENTIFY command if AUTOSTART(Y) is specified in basein.pro. The 
inmsgp program identifies the receiver from the ACCT and USERID, ALIAS and 
ALIASNAME, or LISTNAME parameters of the SEND command.

When entering values for the SENDER and RECEIVER parameters, the ACCT or ALIAS must 
be 7 characters long (padded with blanks, if necessary). The USERID or ALIASNAME must 
begin in the next character position.

y Compress the data for this sender/receiver pair.

n Do not compress the data for this sender/receiver pair.
465



Expedite Base for Windows Programming Guide

Decompressing received compressed files
For the SENDEDI command, inmsgp identifies the sender and receiver from the EDI header. The 
inmsgp program looks for a corresponding entry in the cplookup.tbl file. The Comm-Press 
product supports X12, UCS, EDIFACT, and UN/TDI EDI formats. The SENDER and 
RECEIVER entries for EDI data must match exactly what appears in the appropriate field of the 
EDI header. The inmsgp program examines only the EDI header to resolve sender/receiver pairs. 
Refer to Chapter 7, “Sending and receiving EDI data,’’ for a description of which EDI header 
fields are used to identify the EDI source and destination.

The COMPRESS(T) parameter and the cplookup.tbl file allow you to control what gets 
compressed, based on the receiver. The cplookup.tbl file, like the basein.pro and basein.msg 
files, can be edited and modified when the iebase program is not running.

Decompressing received compressed files 
When compressed files are received, baseout.msg contains new parameters used by the outmsgp 
program to process the received compressed files. The outmsgp program reads the baseout.msg 
file and decompresses the data. The following new parameters are found in the baseout.msg file 
for each compressed file received:

COMPRESS(Y) COMSW(COMM-PRESS) COMVER(301) COMFILE(xxx) 
DCMPRC(00000)

All of the parameters except DCMPRC are obtained from the CDH. When the received file is not 
compressed, none of the data compression parameters listed above appear in the baseout.msg 
entry.

The outmsgp program copies the baseout.pro file to the baseoutr.msg file, and then processes and 
copies each response record back into baseout.msg. When a RECEIVED response record 
indicates compressed data, outmsgp decompresses the data in the received file into the ~IEn file. 
Any uncompressed messages contained in the received file are also copied to the ~IEn file.

After successful decompression, the received file is deleted, and the temporary file is renamed to 
the received file name.

The DCMPRC parameter in the RECEIVED response record provides a Comm-Press return 
code to the user, so that successful decompression processing can be verified or an existing error 
condition reported to the user. The DCMPRC parameter value of ’00000’ is the desired result of 
processing incoming compressed data. If DCMPRC is not ’00000’, refer to the related error 
messages in the baseoutc.msg file and error descriptions at the end of this appendix to determine 
the appropriate action. Error messages are also written to the baseoutc.msg file.
466



Appendix E. Using data compression

Expedite Base for Windows considerations when using COMPRESS(Y) OR COMPRESS(T)
Expedite Base for Windows considerations when using 
COMPRESS(Y) OR COMPRESS(T)

Most of the command parameters, when used with the COMPRESS parameter, are supported as 
documented in this publication. However, the following command parameters function differ-
ently when they are used with the COMPRESS(Y) and COMPRESS(T) parameters.

datatype(a|b) on SEND commands
The inmsgp program uses the DATATYPE parameter during the compression process to 
determine whether ASCII or EBCDIC translation should be performed. After compression, 
the data is sent with DATATYPE(B).

delimited(n|y) on SEND commands 
The inmsgp program uses the DELIMITED parameter during the compression process to 
determine whether the data is delimited with carriage-return or line-feed characters. After 
compression, the data is sent with DELIMITED(N).

translate(translation table) on SEND, SENDEDI, RECEIVE, and RECEIVEEDI commands
This parameter is not supported with COMPRESS(Y) or COMPRESS(T) and results in an 
error if specified on the SEND command (it is ignored on the RECEIVE command). Data is 
always translated from ASCII to EBCDIC during the compression process using the 
standard Expedite Base for Windows translation table.

recordsize(record size) on RECEIVE and RECEIVEEDI commands
Expedite Base for Windows ignores this option for compressed EDI data.

processlen(c|r|i) on RECEIVE commands
Expedite Base for Windows ignores this option when receiving compressed data. If the data 
was compressed as DELIMITED(Y), then carriage-return and line-feed delimiters are 
inserted in the data in their original locations.

removeof(y|n) on RECEIVE commands
Decompressed files always have the EOF character removed.

format(y) on RECEIVE commands
The FORMAT(Y) parameter is not supported.

ediopt(f)
The EDIOPT(F) parameter is not supported.

The Comm-Press programs read the basein.pro file to determine the values for the RECOVERY, 
TRACE, and IEPATH parameters. For this reason, basein.pro must exist for successful 
compression and decompression processing.

For EDI data sent using the SENDEDI command, the character used as the segment terminator 
must not be in the range X’E0’ to X’FF’. Also, carriage return and line feed characters that 
appear within segments are not removed. Instead, these characters are compressed as part of the 
data.
467



Expedite Base for Windows Programming Guide

Restart and recovery considerations with Comm-Press
Restart and recovery considerations with Comm-Press 
The logic used in restart and recovery situations, described earlier in this publication, applies to 
restart and recovery situations where some or all of the files sent and received are compressed.

Because inmsgp processes the basein.msg file before Expedite Base for Windows processing 
takes place, inmsgp must determine whether a restart situation exists before it does any 
processing. If the baseinc.msg file exists, inmsgp assumes that a restart is required.

The inmsgp program restarts by comparing the basein.msg and baseout.msg files. All commands 
that were echoed to the baseout.msg file are left unchanged in the baseinc.msg file and are not 
reprocessed. Remaining commands in the basein.msg file are processed (that is, any requested 
compression is performed) and copied to the baseinc.msg file.

Because of the way inmsgp uses the baseinc.msg file to determine restart status, be careful to 
avoid using an old baseinc.msg data set that might contain data or unpredictable results will 
occur. Instead, you can use the RESET runtime parameter each time you run the iebase program, 
except for known restart situations. This causes all basein.msg commands to be processed.

Restarting the session when using the COMPRESS parameter
In restart situations, you cannot change certain Expedite Base for Windows files, such as 
basein.msg and baseout.msg. You also cannot change the baseinc.msg file. The program uses the 
baseinc.msg file when it processes compressed files.

Restarting the session after modifying basein.msg
As noted earlier in this publication, you can modify entries in basein.msg that are in error and 
restart the session. However, you cannot modify basein.msg entries that have already been 
echoed to the baseout.msg file.

Resetting the session
When you reset the session, the baseinc.msg file is erased.

Restarting the session for outmsgp processing
When the DCMPRC parameter indicates an error condition, you may be able to correct the error 
condition and restart outmsgp processing to decompress received files. To restart just the decom-
pression processing, specify the DECOMP parameter with IEBASE on the operating system 
command line:

iebase decomp

Decompressing files independently of Expedite Base for Windows
Sometimes, you may want to manually decompress compressed files you received from Infor-
mation Exchange. Instead of decompressing the files through Expedite Base for Windows, you 
call the DECOMP program by specifying this command on the operating system command line:

decomp input.fil output.fil

If the input file contains compressed EDI data, enter the following command:

decomp input.fil output.fil edi

The DECOMP program is included on the Comm-Press installation diskette. Refer to the Comm-
Press user’s guide for more information.
468



Appendix E. Using data compression

Error messages and return codes for data compression
Error messages and return codes for data compression 
The inmsgp and outmsgp programs write error messages to baseoutc.msg for error conditions 
that require user intervention. The programs set the error level to 115. The outmsgp program also 
updates the DCMPRC field in the RECEIVED response record to indicate the results of decom-
pressing that received message.

Some decompression errors do not prevent further processing, and only result in a non-zero value 
being placed in the DCMPRC field of the appropriate RECEIVED response record. For example, 
assume that a compressed message is corrupted during transmission. The cyclic-redundancy 
check (CRC) would fail, resulting in a DCMPRC return code of 26015. Processing would 
continue with the next RECEIVED response record. And, if no other session errors occurred, the 
SESSIONEND return code would be changed to 28010, indicating that not all commands were 
processed successfully.

26001 Error allocating memory.

Explanation: A request for storage failed.

User Response: Close some applications and try again. See Restart and Recovery Consider-
ations with Comm-Press for more information.

26003 Invalid use of compress parameter.

Explanation: COMPRESS(Y) or COMPRESS(T) was specified on a SEND or SENDEDI 
command, but the Comm-Press data compression software was not found.

User Response: Contact your marketing representative to acquire the Comm-Press data 
compression software.

26004 Unable to decompress received files.

Explanation: Compressed files were received, but the Comm-Press data compression software 
was not found.

User Response: Contact your marketing representive to acquire the Comm-Press data 
compression software.

26005 Invalid value for COMPRESS parameter.

Explanation: An invalid value was specified for the COMPRESS parameter.

User Response: Valid values are ’E’, ’N’, ’Y’, ’T’, and ’V’. Consult the Expedite Base and 
Comm-Press user guides for for instructions regarding the use of the COMPRESS parameter.

26006 FORMAT parameter not valid with COMPRESS(Y).

Explanation: The FORMAT and COMPRESS parameters were both specified on a SEND 
command.

User Response: FORMAT is not supported when using compression. Remove one of the param-
eters.
469



Expedite Base for Windows Programming Guide

Error messages and return codes for data compression
26007 Cannot compress for reserved message class %s.

Explanation: An invalid message class was specified.

User Response: The message class is a reserved class for use by the STEDI system. These 
files cannot be compressed.

26008 TRANSLATE parameter not valid with COMPRESS(Y).

Explanation: The TRANSLATE and COMPRESS parameters were both specified on a SEND 
or SENDEDI command.

User Response: TRANSLATE is not supported when using compression. Remove one of the 
parameters.

26009 Compressed segment not found in file.

Explanation: The RECEIVED response record indicates compressed data was received; 
however, no compressed data was found in the received file.

User Response: The file has probably been corrupted during transmission. Receive the file 
again.

26010 Error creating temporary file name.

Explanation: An error occurred creating a temporary file name.

User Response: Either the TMP environment variable is set to a non-existent directory, or the 
directory is full. Verify the setting or delete the temporary files in the directory.

26012 Trial period has expired.

Explanation: The Comm-Press trial period has expired.

User Response: Contact Comm-Press, Inc. at 800-425-0444 to obtain a permanent software 
license.

26015 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26017 Restricted license violation.

Explanation: You have a restricted version of the software that is limited to use with a certain 
trading partner.

User Response: Contact your marketing representative to obtain an unrestricted license for the 
Comm-Press data compression software.
470



Appendix E. Using data compression

Error messages and return codes for data compression
26018 Invalid EDI envelope.

Explanation: The EDI header or trailer does not conform to the EDI standard, or a premature 
end-of-file condition was encountered on input. This error can also be caused by an invalid 
segment terminator in the EDI header.

User Response: Verify valid EDI headers and trailers are present. the segment terminator must 
be less than X’EO’.

26020 Error opening input file: %s.

Explanation: An error occurred opening the file for compression or decompression.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26021 Error reading input file: %s.

Explanation: An error occurred reading the file during compression or decompression.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26024 Error positioning input file: %s.

Explanation: An error occurred positioning the file during compression or decompression.

User Response: Examine the following message to determine the cause of the error.

26030 Error opening output file: %s.

Explanation: An error occurred opening the file for compression or decompression.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26032 Error writing output file: %s.

Explanation: An error occurred writing the file during compression or decompression.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26033 Error closing output file: %s.

Explanation: An error occurred closing the file after compression or decompression.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.
471



Expedite Base for Windows Programming Guide

Error messages and return codes for data compression
26040 Error opening work file.

Explanation: A file error occurred.

User Response: Examine the operating system error message to determine the cause of the 
error. Correct the problem and restart the session. If the error occurred during decompression, use 
the DECOMP parameter when restarting the session.

26041 Error reading work file.

Explanation: A file error occurred.

User Response: Examine the operating system error message to determine the cause of the 
error. Correct the problem and restart the session. If the error occurred during decompression, use 
the DECOMP parameter when restarting the session.

26042 Error writing work file.

Explanation: A file error occurred.

User Response: Examine the operating system error message to determine the cause of the 
error. Correct the problem and restart the session. If the error occurred during decompression, use 
the DECOMP parameter when restarting the session.

26050 Error opening ’encrypt.key’ file.

Explanation: An error occurred opening the file containing the encryption key.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26051 Error reading ’encrypt.key’ file.

Explanation: An error occurred reading the file containing the encryption key.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26052 Error decrypting output file.

Explanation: The compressed data did not decrypt successfully.

User Response: Make sure the correct encryption key is specified in encrypt.key file.

26055 Error decrypting input file: %s.

Explanation: The received file did not decrypt successfully.

User Response: This is most likely due to an incorrect decryption key specified in the 
encrypt.key file. Correct the key and rerun IEBASE. See Restart and Recovery Considerations 
with Comm-Press for more information.
472



Appendix E. Using data compression

Error messages and return codes for data compression
26060 Error opening file: %s.

Explanation: An error occurred opening the indicated file.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26061 Error reading file: %s.

Explanation: An error occurred reading the indicated file.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26062 Error writing file: %s.

Explanation: An error occurred writing the indicated file.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26063 Error closing file: %s.

Explanation: An error occurred closing the indicated file.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26064 Error positioning file: %s.

Explanation: An error occurred positioning the file during compression or decompression.

User Response: Examine the following message to determine the cause of the error.

26066 EOF reached before end of command.

Explanation: End-of-file was reached while processing a SEND or SENDEDI command.

User Response: The command is not terminated by a semicolon. Correct the command and 
rerun IEBASE.

26067 Error removing file: %s.

Explanation: An error occurred deleting the indicated file.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.

26068 Error renaming file: %s.

Explanation: An error occurred renaming the indicated file.

User Response: Examine the following message to determine the cause of the error. See 
Restart and Recovery Considerations with Comm-Press for more information.
473



Expedite Base for Windows Programming Guide

Error messages and return codes for data compression
26091 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26092 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26093 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26094 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26095 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26096 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26097 Compressed segment in error.

Explanation: The error checking routine indicated the compressed data was corrupted.

User Response: The data was probably corrupted during transmission. The data has been 
removed from the received file and must be received again.

26098 Invalid Comm-Press version.

Explanation: The received file was compressed with a newer version of the Comm-Press 
software.

User Response: Contact your marketing representative to acquire the latest version of the 
Comm-Press data compression software.
474



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glossary

This glossary defines words as they are used in this 
book. It includes terms and definitions from the IBM 
Dictionary of Computing (New York: McGraw-Hill, 
1994). If you are looking for a term and cannot find it 
here, see the Dictionary of Computing for additional 
definitions.

This glossary includes terms and definitions from:

• The American National Dictionary for 
Information Systems, ANSI x3.172-1990, 
copyright 1990 by the American National 
Standards Institute (ANSI). Copies may be 
purchased from the American Standards 
Institute, 11 West 42 Street, New York, New 
York 10036. Definitions are identified by the 
symbol (A) after the definition.

• The Information Technology Vocabulary, 
developed by Subcommittee 1, Joint Technical 
Committee 1, of the International Organization 
for Standardization and the International 
Electrotechnical Commission (ISO/IEC JTC1/
SC1). Definitions of published parts of this 
vocabulary are identified by the symbol (I) after 
the definition.

A 
account. A set of users who work for the same 
company.

account name. The name assigned to a group of 
users.

acknowledgment. A response from Information 
Exchange that tells you whether files were delivered, 
received, purged, or various combinations of the 
three.

address. A user’s account name and user identifi-
cation (ID) that Information Exchange uses to route 
files.

AIX. Advanced Interactive Executive.

alias name. An alternate name used in place of an 
account and user ID.

alias table. A nickname file kept in Information 
Exchange.

alphanumeric. Pertaining to a character set that 
contains letters, digits, and usually other characters, 
such as punctuation marks.

American National Standard Code For Information 
Interchange (ASCII). The standard code, using a 
coded character set consisting of 7-bit coded 
characters (8-bits including parity check), that is used 
for information interchange among data processing 
systems, data communication systems, and associated 
equipment. The ASCII set consists of control 
characters and graphic characters.

American National Standards Institute (ANSI). An 
organization consisting of procedures, consumers, and 
general interest groups, that establishes the proce-
© Copyright GXS, Inc. 1998, 2005 475



Expedite Base for Windows Programming Guide
dures by which accredited organizations create and 
maintain voluntary industry standards in the United 
States.

ANSI. American National Standards Institute.

ANSI X12. A data standard used by many indus-
tries for EDI and supported by IBM’s EDI services.

API. Application Program Interface.

Application Program Interface (API). A functional 
interface supplied by the operating system or by a 
separately orderable licensed program that allows an 
application program written in a high-level language 
to use specific data or functions of the operating 
system or the licensed program.

archive. A copy of one or more files or a copy of a 
database that is saved for future reference or for 
recovery purposes in case the original data is 
damaged or lost.

ASCII. American National Standard Code for Infor-
mation Interchange.

asynchronous. A protocol that permits a communi-
cation device to operate in an unsynchronized and 
unpredictable manner, much like a human conver-
sation; used for modems and low-speed ASCII 
terminals (PCs).

attribute. A property or characteristic of one or more 
entities; for example, length, value, color, or intensity.

audit trail. Data, in the form of a logical path linking 
a sequence of events, used for tracing the transactions 
that have affected the contents of a record.

B
binary. Pertaining to files, such as an executable 
computer program, that contains machine instructions 
that a person cannot read or enter from a computer 
keyboard.

C
carriage-return and line-feed characters (CRLF). A 
word processing formatting control that moves the 
printing or display point to the first position of the 
next line.

CDH. Common data header.

centralized alias table. Permanent tables that reside 
in Information Exchange and contain a centralized list 
of addresses  You can put a listing of your trading 
partners’ addresses in this table instead of maintaining 
destination tables in multiple locations. A centralized 
alias table enables Information Exchange to resolve 
destinations because it contains a list of Expedite 
Base for Windows EDI destinations paired with Infor-
mation Exchange destinations. Expedite Base for 
Windows searches this table for an EDI destination 
and then uses the corresponding Information 
Exchange destination as the actual address.

character. A letter, digit, or other symbol that is used 
as part of the organization, control, or representation 
of data.

checkpoint-level recovery. A method of restart and 
recovery within Expedite Base for Windows. A point 
where information about the status of a job can be 
recovered so that the job step can be restarted later.

command. A request from a terminal for the perfor-
mance of an operation or the execution of a particular 
program.

command file. A file that contains Expedite Base 
for Windows commands. There are two Expedite 
Base for Windows command files, profile command 
and message command. Place commands pertaining 
to your profile in basein.pro (profile command file). 
Place commands pertaining the transfer of files or 
information in basein.msg (message command file).

command line. On a display screen, a display line in 
which only commands can be entered.

commit. The point at which a file is either delivered, 
canceled, or purged. When a session fails, all uncom-
mitted files are lost.

common data header (CDH). A set of control infor-
mation about a file Expedite Base for Windows builds 
a CDH for every file sent. The CDH information is 
sent with the file to Information Exchange. When the 
file is received by the trading partner, the receiving 
interface can use the information in the CDH.

compression. The process of eliminating gaps, 
empty fields, and redundant data to shorten the length 
of files.

CRLF. Carriage-return and line-feed characters.
476



. Glossary
D
default value. A value assumed when no value has 
been specified.

delivery acknowledgment. An acknowledgment 
that Information Exchange generates when a desti-
nation user receives a file from an Information 
Exchange mailbox.

dial connection. A connection between a terminal 
and a telecommunications device over a switched 
line, initiated by using a dial or pushbutton telephone.

disk operating system (DOS). An operating system 
for computer systems that use disks and diskettes for 
auxiliary storage of programs and data.

distribution list. A list of the addresses of users with 
whom a certain user communicates. It is used to send 
files to several people at one time instead of having to 
send the same files many times.

E
EBCDIC. Extended binary-coded decimal inter-
change code.

EDI. Electronic data interchange.

EDI destination table. A list of EDI destinations 
paired with Information Exchange destinations used 
by Expedite Base for Windows.

EDI envelope. A group of EDI transactions with a 
single destination address.

EDIFACT. Electronic data interchange for adminis-
tration, commerce, and transport (EDIFACT).

Electronic Data Interchange (EDI). The exchange 
of data and documents between different users 
according to standardized rules.

Electronic Data Interchange For Administration, 
Commerce, And Transport (EDIFACT). An EDI 
standard for the fields of administration, commerce, 
and transportation.

electronic mail (e-mail). Correspondence in the 
form of files transmitted between user terminals over 
a computer network.

electronic mailbox. Synonym for mailbox.

e-mail. Electronic mail.

emulator. A combination of programming 
techniques and special machine features that permits a 
computing system to execute programs written for a 
different system.

ESO. Extended Security Option.

Extended Binary-coded Decimal Interchange Code 
(EBCDIC). A coded character set consisting of 8-bit 
coded characters.

Extended Security Option (ESO). An option you 
can specify in your profile for stricter password 
security.

extended security users. Users with stricter security 
requirements, such as levels of password protection.

F
field. An area of a panel reserved for data of a 
certain type or length.

file. A named set of records stored or processed as a 
unit.

file-level recovery. A method of restart and 
recovery within Expedite Base for Windows; check-
points are taken for each file sent and received.

G
global alias. An alias that can be used by any Infor-
mation Exchange user on a particular system.

global alias table. (1) A system-wide alias table. (2) 
An alternative name table set up within a system.

H
host system. The controlling or highest level system 
in a data communication configuration; for example, a 
System/38 is the host system for the workstations 
connected to it.

I
Information Exchange. (1) A communication 
service that allows users to send and receive infor-
mation electronically. (2) A continuously running 
CICS application on the network that stores and 
forwards information to trading partners.
477



Expedite Base for Windows Programming Guide
Information Exchange Administration Services. An 
online, panel-driven product that the Information 
Exchange Service Administrator uses to perform 
administrative tasks for Information Exchange.

Information Exchange Service Administrator. The 
person who coordinates the use of Information 
Exchange in a company.

L
leased lines. A connection between systems or 
devices that does not have to be made by dialing.

library. A place to store information for an extended 
period of time. A library consists of a collection of 
files called library members.

library member. A named collection of records or 
statements in a library.

M
mailbox. A file that holds the electronic mail 
Synonymous with electronic mailbox.

member. See library member.

message command. A command that pertains to the 
transferring of files or data. Place message commands 
in basein.msg (message command file).

message command file. A file in which you place 
commands that pertain to the transferring of files or 
data. In Expedite Base for Windows, this file is 
basein.msg.

message group. A collection of messages that is 
treated as a single entity by Information Exchange; 
for example, a file of records to be printed as a single 
report.

message response file. A file that contains the 
Expedite Base for Windows and Information 
Exchange replies to certain message commands. In 
Expedite Base for Windows, this file is baseout.msg. 
Expedite Base for Windows generates this file after it 
processes the message command file (basein.msg). 
The message response file contains return codes such 
as error messages and completion codes.

modem. A device that converts digital data from a 
computer to an analog signal that can be transmitted 
on a telecommunication line, and converts the analog 
signal received to data for the computer.

O
organizational alias. (1) An alias that can be used by 
any user in an account. (2) A company-wide alias 
table.

organizational alias table. An alias table set up 
within an account on Information Exchange.

P
parameter. (1) A variable that is given a constant 
value for a specified application and that may denote 
the application. (2) An item in a menu for which the 
user specifies a value or for which the system 
provides a value when the menu is interpreted. (3) 
Data passed between programs or procedures.

password. A unique string of characters known to a 
computer system and to a user, who must specify the 
character string to gain access to a system and to the 
information stored within it.

path. The subdirectory in which a file is located.

permanent distribution list. A distribution list that is 
stored permanently in Information Exchange.

private alias. An alias that can be used only by the 
user who created it. 

private alias table. An alias table set up for an 
individual user.

profile command. A command that pertains to 
profile specific information, such as your password, 
account, and user ID. Place profile commands in 
basein.pro (profile command file).

profile command file. A file in which you place 
profile commands pertaining to profile specific infor-
mation. In Expedite Base for Windows, this file is 
basein.pro.

profile response file. A file that contains the 
Expedite Base for Windows and Information 
Exchange replies to certain profile commands. In 
Expedite Base for Windows, this file is baseout.pro. 
Expedite Base for Windows generates this file after 
478



. Glossary
processing the profile command file (basein.pro). The 
profile response file contains return codes such as 
error messages or completion codes.

purge acknowledgment. An acknowledgment Infor-
mation Exchange generates when a file is purged from 
the receiver’s mailbox.

Q
qualifier table. A list of EDI data types (X12, UCS, 
EDIFACT, or UN/TDI) paired with the ID qualifier 
for a particular type of data (for example, 01 for an 
X12 DUNS number).

R
receipt acknowledgment. An acknowledgment 
Information Exchange generates when a file reaches 
the receiver’s mailbox after a successful Expedite 
Base for Windows session.

reserved files. Files that enable Expedite Base for 
Windows to perform various session tasks. Expedite 
Base for Windows uses these files to track and store 
session information, provide optional session infor-
mation, and control session function.

reset. To start a session at the beginning of a 
command file when the session ends in error and you 
do not want Expedite Base for Windows to continue 
it.

response file. A file that contains the Expedite Base 
for Windows and Information Exchange replies to 
certain commands. Expedite Base for Windows 
generates three response files:  profile response, 
message response, and response work file. In reply to 
profile commands, Expedite Base for Windows 
generates baseout.pro (profile response file). In reply 
to message commands, Expedite Base for Windows 
generates baseout.msg (message response file). In 
reply to commands processed since the last Infor-
mation Exchange checkpoint, Expedite Base for 
Windows generates tempout.msg (response work 
file). Response files contain return codes, such as 
error messages or completion codes.

response work file. A file that contains response 
information processed since the last Information 
Exchange checkpoint. In Expedite Base for Windows, 
this file is tempout.msg.

restart. To resume a session at the last checkpoint, 
when the session ends in error and you want Expedite 
Base for Windows to continue it.

S
secure sockets layer. Digital certificates encrypt 
data using Secure Sockets Layer (SSL) technology, a 
standard method for protecting Web communications 
that was developed by Netscape Communication 
Corporation.The SSL security protocol provides data 
encryption, server authentication, message integrity, 
and optional client authentication for TCP/IP connec-
tions.

service administrator. A primary contact person in 
your organization for various Information Exchange 
support groups. See also Information Exchange 
Service Administrator.

Service Manager. A product offered by AT&T for 
customer administrators with responsibility to assist 
and manage users within customer accounts.

session. The period of time during which a user of a 
terminal can communicate with an interactive system, 
usually, elapsed time between logon and logoff.

session-level recovery. A method of restart and 
recovery within Expedite Base for Windows; no files 
are committed until the session ends normally.

SNA. Systems Network Architecture.

SSL. See secure sockets layer.

string. A sequence of elements of the same nature, 
such as characters, considered as a whole.

syntax. The structure of expressions in a language.

system ID. The name that the network assigns to a 
system.

systems network architecture (SNA). The 
description of the logical structure, formats, protocols, 
and operational sequences for transmitting infor-
mation units through, and controlling the configu-
ration and operation of, networks. The layered 
structure of SNA allows the ultimate origins and 
destinations of information, that is, the users, to be 
independent of and unaffected by the specific SNA 
network services and facilities used for information 
exchange.
479



Expedite Base for Windows Programming Guide
 T
TCP/IP. Transmission Control Protocol/Internet 
Protocol. A set of communications protocols that 
support peer-to-peer connectivity functions for both 
local and wide area networks.

temporary distribution list. A distribution list that 
lasts only for the duration of your Information 
Exchange session.

trading partners. The business associates with 
whom users exchange information electronically.

Transmission Control Protocol/internet Protocol 
(TCP/IP). A set of communications protocols that 
support peer-to-peer connectivity functions for both 
local and wide area networks.

U
UCS. Uniform Communication Standard.

Uniform Communication Standard (UCS). A 
standard EDI format used in the grocery industry.

United Nations/trade Data Interchange (UN/TDI).
An EDI standard for administration, commerce, and 
transportation fields developed by the United Nations 
Economic Commission for Europe.

UN/TDI. United Nations/Trade Data Interchange.

user-initiated recovery. A method of restart and 
recovery within Expedite Base for Windows; check-
points are taken after each COMMIT command, unless 
there is nothing to commit.

user class. A name that users can assign to their 
documents to identify them to trading partners.

user ID. A name that identifies a user to Information 
Exchange, within an account.

user message class. A category used to group mail 
This category is agreed on among trading partners.

user profile. A description of a user that includes 
such information as password, account, and user ID It 
also contains the characteristics of how a user works 
with Information Exchange.

W
wildcard character. A synonym for pattern-
matching character.

X
X12. A specially formatted data stream.
480



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Index

A

B

C

D

E

F

G

H

I

L

M

N

O

P

Q

R

S

T

U

V

W

X
Numerics
29999 return code77130
A
access authority levels, Information Exchange271
account ID, addressing files57
acknowledgments

description267
libraries270
requesting from Information Exchange5

adding library members269
additional features263
addressing files57
© Copyright GXS, Inc. 1998, 2005 481



Expedite Base for Windows Programming Guide
alias tables, centralized58
alternate translation tables284
ANSI X12

bypassing destination tables102
destination segment101
envelopes100

API
example55
Expedite Base for Windows49
other considerations56
problem recording56
program update handling56
status messages52
trace file routing56

application interface
designing45

archive files, retrieving273
ARCHIVEMOVE command180
archiving

selected files272
archiving files272
ASCII

files59
receiving files283
sending files282
translation to EBCDIC447

asynchronous communication
network gateway324
profile example3536

AT&T Net Client12
AUDIT command181
audit records

formats, message265
audit trails

description263
requesting263
retrieving264

authority levels271
authorizations

libraries271
trading partners276

AUTOEND record237
AutoMode command21
AUTOSTART record238
AVAILABLE record239
B
basein.msg

changing on restart63118
example38

basein.pro
changing on restart64119
examples3539

baseout.msg
changing on restart64119
example4066
viewing sample session29

baseout.pro
changing on restart64119
examples38
viewing sample session28

binary files, sending and receiving59
blank spaces

EDI segments110
bypassing destination tables102
C
C programming language

example495053
requirement47

CANCEL command184
CDH

description42
CDH (common data header)281441
centralized alias tables58107
changing files on restart118
changing passwords173
charges

library271
messages276

checkpoint-level recovery60115
file number limits87140
multiple session warning117
post-session processing63118

checkpoints61116
choosing to receive specific files86139
CLASS parameter110
classes, reserved user446
CLEARBUFFER command306
CLOSEPORT command306
codes

command file syntax errors372
Comm-Press error messages428
communiation device driver errors398
completion errors344
data compression errors469
destination verification401
display status script syntax errors394
EDI errors402
general environment errors407
internal communication errors428
modem script syntax errors388
network errors381
parse rerrors399
PF key errors428
return, checking7479127132
482



Index
session errors433
session start and end errors425
unexpected program errors436

command file syntax errors372
command line parameters, IEBASE277
command parser trace example337
command RETURN records42
command syntax

examples177
understanding32

commands
ARCHIVEMOVE180
AUDIT181
CANCEL184
CLEARBUFFER306
CLOSEPORT306
COMMIT187
DEFINEALIAS188
DIAL151
END192
END, multiple7782130136
GET308
GETANSWER307
GETMEMBER193
GETVALUE307
IDENTIFY156
IEBASE, command line parameters277
IFANSWER309
IFVALUE310
LIST197
LIST example197
LIST, distribution lists58
LISTLIBRARIES200
LISTMEMBERS201
message177
modem scripts305
OPENPORT311
PURGE202
PUTMEMBER203
QUERY206
RECEIVE207
RECEIVEEDI215
removal warning83136
RETURN312
SAY313
SEND39222
SENDEDI228
SESSION159
SETLINE314
SETPACING314
START233
START, multiple7782130136

TCPCOMM161162
TCPCOMM, updating341
TRACE163
TRACE example163
TRANSMIT165
TRANSMIT, updating for TCP/IP

communication340
WAIT315

COMMIT command187
common data header (CDH)

description42441
fields281
using281

Comm-Press
error messages428
files463
product463
restart and recovery468

communication
asynchronous with network gateway324
interapplication48
interfaces with no CDH282
internal errors428
network gateway, asynchronous324
TCP/IP339

COMPRESS parameter
considerations467

compressing data263
configuration commands in WIN.INI21
configuring

WIN.INI file49
connect script trace example331
connecting to network6
connectivity log

details325
problem determination327
using323

connectivity requirements10
considerations, API56
control facility, Expedite Base for Windows46
control fields, Information Exchange109
conventions

terminologyvii
typeviii

creating
destination tables112
profiles149

customizing logon screen320
D
data compression263

COMPRESS parameter465
compressing data463
483



Expedite Base for Windows Programming Guide
considerations467
error codes469

data decompression263466
data, sending and receiving4
DDE47
decompressing data263466
decryption

passwords175
routines175

DEFINEALIAS command188
destination

resolving EDI101
segments101

destination table
bypassing102
creating112
EDI105
missing104

destination verification errors401
device drivers errors398
DIAL command151
dialing session, manually14
directories

Expedite Base for Windows280
reserved file names446

display script sample298
display status script

syntax errors394
using293

display trace example336
display.scr298
displaying session status messages289
displaying text296
distribution lists

description58
Information Exchange108
temporary108

Dynamic Data Exchange (DDE)47
E
EBCDIC

receiving files284
sending files283
translation to ASCII454

EDI
destination tables105119

format113
envelopes, definitions100
error codes402
Expedite Base for Windows100
file example105107
network99
qualifier table

changing119
description112
example106

receiving data111
resolving destinations101
segments, blank spaces110
sending and receiving4
sending and receiving, examples142
translators, integrating141
work file119

EDI destination tables
missing104

EDI file example108
EDI qualifier tables

missing104
using106

EDIFACT
destination segment101
destination tables

bypassing102
envelopes100

ediwork.fil119
electronic mail

see e-mail5
e-mail

customized user class59
default user class58
file size58
sending and receiving58
transferring5

encryption
passwords175
routines175

END command
description192
multiples in session level recovery7782130136

end errors425
error codes343

command file syntax372
Comm-Press428
communication device driver398
completion344
data compression469
destination verification401
display status script syntax394
EDI402
general environment407
internal communication428
modem script syntax388
network381
parser399
PF key428
484



Index
session433
session start and end425
unexpected program436

error messages
Expedite Base for Windows343
Information Exchange5
receiving, example39
resetting a session68121
send and receive example41

errors
example, receiving files70122
example, receiving multiple files71124
example, sending file68121
example, sending multiple files126
tempout.msg file43

events, status293
examples

API55
asynchronous communication profile3536
basein.pro39
baseout.msg4066
baseout.pro38
C programming language495053
command parser trace file337
command syntax177
connect script trace file331
display trace file336
EDI data, sending and receiving142
EDI file105107108
EDI qualifier table106
error messages received41
errors, receiving files7071122124
errors, sending files68121126
Expedite Base for Windows89
Expedite Base for Windows sample files161920
link trace file338
modem scripts315
modem trace file330
receiving files39
response file40
response file with error41
sending files39
session reset68121
session restart64120
session using user-initiated recovery66
session-level receiving error81134
session-level sending error80133
syntax errors43
TCP/IP communication profile37
tempout.msg4366
trace request profile37

Expedite Base for Windows

attended operation45
configuration commands21
control facility46
EDI data handling100
examples89
files installed14
installation47
loading from application49
operating reuirements9
programming considerations47
quick start25
running14
running in hidden mode22
running in separate directory280
unattended operation45

Extended Security Option (ESO)174
F
features, additional263
FFMSG00158
fields, CDH281
file-level recovery60115

file number limits87140
multiple session warning117
post-session processing63118

files
addressing57
archiving selected272
ASCII59

receiving283
sending282

basein.msg63118
basein.pro64119
baseout.msg64119
baseout.msg example66
baseout.pro64119
binary59
binary, sending and receiving59
changing on restart63118
Comm-Press463
display script sample298
EBCDIC

receiving284
sending283

ediwork.fil119
e-mail record size58
Expedite Base for Windows14
hostname.fil, updating341
installed for Expedite Base for Windows14
limits

checkpoint-level recovery87140
file-level recovery87140
session-level recovery87140
485



Expedite Base for Windows Programming Guide
user-level recovery87140
multiple

receiving error example71124
sending error example70126

rcvfiles.fil64119
rcvofset.fil64119
receiving

from different operating systems285
multiple85139
specific86139

required for installation48
reserved directory names446
reserved file names443
retrieving archive273
sample directory161920
SEND and RECEIVE limits87140
sending

to different operating systems285
trace file56

sent or received64119
session.fil64119
session.fil, restart warning63118
temporary response43
tempout.msg

example66
text, sending and receiving59
trace

command parser example337
connect script example331
description328
display example336
link example338
modem example330
parameters328
renaming before sending56

transferring4
updates, receiving through Information

Exchange56
WIN.INI49
WIN.INI, TCP/IP entries341

formats, audit records265
functions, menu bar23
G
GETANSWER command307
GETMEMBER command193
GETVALUE command307
GO command308
H
hardware requirements9
hostname.all341
hostname.fil, updating341

I
IDENTIFY command156
identifying library members269
IEBASE command

command line parameters277
iebase.pro

restriction on changing64119
viewing sample29

IEBASE_COMMAND message46
IEBASE_COMMAND parameters50
IEBASE_EVENT messages5354
IEPATH parameter

reserved file names445
IFANSWER command309
IFVALUE command310
Information Exchange

account IDs2
administration services6
alias tables, centralized58107
audit trails263
authority levels271
control fields, specifying109
distribution lists108
error messages5
introduction2
libraries268
multiple session warning62117
passwords2
requesting acknowlegments5
sessions3
translate table447
user IDs2

initialization, modem scripts318
input file for Windows47
installation

considerations47
Expedite Base for Window files14
required files48
requirements9
running the installation program10

interapplication communication48
interfaces with no CDH support282
L
labels, modem scripts303
LASTSESS parameter78131
levels, authority access271
libraries

acknowledgments270
authorizations271
charges271
payment levels271
validations271
486



Index
working with6268
library members

adding and retrieving269
identifying269

LIBRARYLIST record243
limits, number of files87140

checkpoint-level recovery87140
file-level recovery87140
session-level recovery87140
user-level recovery87140

link trace example338
LIST command197

distribution lists caution58
example197

LISTLIBRARIES command200
LISTMEMBERS command201
lists

distribution58
Information Exchange108
temporary108

distribution and LIST command58
modem301
modems

adding entries301
deleting entries302

modems, editing entries302
loading Expedite Base for Windows49
logon screen, customized320
logs, connectivity323

details325
problem determination327

LPARAM parameter53
M
mailbox

querying with panel-driven interface267
querying with QUERY command265

main window, displaying22
MainWindow command21
manual dialing14
MEMBERLIST record245
MEMBERPUT record247
menu bar function23
message command file118

changing63
description38
modifying sample file27

message commands177
message names, providing109
message response file

changing64119
description39
processing42

message sequence numbers, providing109
messages

API status52
charges276
IEBASE_COMMAND46
IEBASE_EVENT5354
providing names109
providing sequence numbers109
status52

modem initialization scripts318
modem list

adding modems301
customizing301
deleting modems302
editing modems302

modem reset scripts318
modem scripts

commands305
creating303
examples315
initialization318
labels303
reset318
syntax errors388
variables303

modem setup program
creating scripts303
customizing the modem list301
using299

modem trace example330
modifying files sent or received64119
MOVED record248
MSGNAME parameter109
MSGSEQNO parameter109
multiple files, receiving85139
multiple Information Exchange sessions

with session-level recovery83
multiple sessions

Information Exchange62117137
N
network

connecting6
EDI data handling99
errors381
logon screen320
security, mailbox6

network gateway
asynchronous communication324

NOTSENT record249
checking127

O
OPENPORT command311
487



Expedite Base for Windows Programming Guide
OVERWRITE parameter, resetting session
warning73
P
panel-driven interface

mailbox267
parameters

CLASS110
COMPRESS465
IEBASE, command line277
IEBASE_COMMAND50
IEPATH, reserved file names445
LASTSESS78131
LPARAM53
MSGNAME109
MSGSEQNO109
OVERWRITE and resetting sessions73
PATH, reserved file names444
trace files328
TRANSLATE example60
VERIFY39
WPARAM5053

parser errors399
passwords

changing173
encryption and decryption175

PATH parameter, reserved file names444
PATH statement, reserved file names443
payment levels

libraries271
trading partners276

post-session processing63118
preparation

TCP/IP communication339
problem determination

connectivity log327
problems

recording through API56
sending trace file56

processing
post-session for session-level recovery78132

profile command file
changing on restart64119
description33
modifying sample file26

profile commands149
profile information file64119
profile response file

changing on restart64119
description38

profile, creating149
PROFILERC record38170
program

modem setup301
setting screen display22
unexpected errors436

programming considerations47
PURGE command202
PUTMEMBER command203
Q
qualifier table, EDI104106
qualtbl.tbl112
QUERY command206
querying mailboxes265

panel-driven interface267
quick start25
R
rcvfiles.fil64119
rcvofset.fil64119
RECEIVE command207
receive name file64119
receive offset file64119
RECEIVED record

checking4373127
syntax251

RECEIVEEDI command215
receiving

ASCII files283
binary files59
data4
EBCDIC files284
EDI data111142
e-mail58
file example

message command39
multiple file error7071122124
session-level error81134

file number limits87140
files from different operating systems285
multiple files85139
specific files86139
text files59
update files through Information Exchange56

records
AUTOEND237
AUTOSTART238
AVAILABLE239
checking NOTSENT, SENT and

RECEIVED127
checking SENT and RECEIVED73
LIBARYLIST243
MEMBERLIST245
MEMBERPUT247
MOVED248
NOTSENT249
488



Index
PROFILERC38170
RECEIVED43251
RETURN171257
SENDEDI response111
SENT43258
SESSIONEND260
STARTED261
WARNING172262

recovery
checkpoint level60115
checkpoints61116
Comm-Press468
file level60115
levels, description60114
post-session processing63118
session level76130
session level example80133
user-initiated level60115
user-initiated session example66

removing commands83136
requesting audit trails263
requesting Information Exchange acknowledgments5
requirements

connectivity10
Expedite Base for Windows9
hardware9
software9

reserved file names443
directory446
IEPATH parameter445
PATH parameter444
PATH statement443

reserved user classes443446
resetting

modem scripts318
session68121
session, example68121

resolving EDI destinations101
response file example40
response records, SENDEDI111
restarting

changing files63118
Comm-Press468
session63118
session example64120
session example for user-initiated recovery66
session file warning63118
session return codes75129

retrieving
archive files273
audit trails264
library members269

return codes
2999977130
checking7479127132
session42
session restart75129
session-level recovery136
timeout77130

RETURN command312
RETURN record

checking42
message response257
profile response171

running
Expedite Base for Windows14
installation program10
sample session27

S
sample

message command file27
profile command file26

samptest.new, viewing sample session30
SAY command313
scripts

display status293
modem

commands305
examples315
initialization318
labels303
reset318
variables303

modem, creating303
welcome screen320

security
customer responsibilities6
extended option174

SEND command39222
SENDEDI command228
SENDEDI response records111
sending

ASCII files282
binary files59
bypassing destination tables102
data4
EBCDIC files283
EDI data142
e-mail58
file example

error68
error and reset121
message command39

example39
489



Expedite Base for Windows Programming Guide
multiple file error126
session-level error80133
to different operating systems285

file number limits87140
text files59

SENT record
checking4373127
syntax258

session
errors433
main window290
manually dialing14
multiple Information Exchange83137
resetting68121
resetting example68121
restart example64120
restarting63118
restarting and return codes75129
results, viewing28
return codes, reviewing42
running sample27
status, displaying289

SESSION command159
session work file64119
session.fil

restart warning63118
SESSIONEND record260
session-level recovery76130

example80133
file number limits87140
multiple Information Exchange sessions83137
multiple START and END

commands7782130136
post-session processing78132
receiving error example81134
return codes136
sending error example80133
warning77136

SETLINE command314
SETPACING command314
setting up

AT&T Net Client12
modems299

setting up AT&T Net Client12
software requirements9
specific files, receiving86139
START command233

multiples in session-level recovery7782130136
start errors425
start, quick25
STARTED record261
statements, PATH, reserved file names443

status
events293
messages52
messages, APIs52
script, display293
session, displaying289
viewing27
window description290

syntax description32
T
tables

alias, centralized107
destination

bypassing102
creating112
EDI105
missing104

EDI destination113119
EDI qualifier112119
qualifier

EDI106
missing104

translation
alternate284
Information Exchange447

TCP/IP communication339
entries in WIN.INI341
preparation339
profile example37
updating TCPCOMM command341
updating TRANSMIT command340

TCPCOMM command161162
updating for TCP/IP communication341

temporary distribution list108
temporary response file43
tempout.msg

description43
example43

tempout.msg example66
terminology conventionsvii
text

ASCII description59
displaying296
sending and receiving files59
variables296

timeout return codes77130
TRACE command163
trace file

description328
examples

command parser337
connect script331
490



Index
display336
link338
modem330

parameters328
renaming56
sending to support personnel56

trace request profile example37
trading partners

authorizations276
payment levels276
validations276

transferring
EDI data4
e-mail5
files4

TRANSLATE parameter example60
translate table

alternate284
description59
Information Exchange447

translation
ASCII to EBCDIC447
EBCDIC to ASCII454
EDI, integrating141
translate table59

TRANSMIT command
syntax165
updating for TCP/IP communication340

Traveling User feature275
ttable.tbl113
type conventionsviii
U
UCS

destination segment101
destination tables, bypassing104
envelopes100

UN/TDI
destination segment101
destination tables, bypassing103
envelopes100

updates, receiving through Information Exchange56
updating, hostname.fil341
user class

EDIFACT110
e-mail59
FFMSG00158
providing110
reserved443446
UCS110
UN/TDI110
X12110

user ID, addressing files57

user-initiated recovery60115
file number limits87140
multiple session warning117
post-session processing63118

V
validations

libraries271
trading partners276

variables
modem scripts303
text296

VERIFY parameter39
viewing

session results28
status display27

W
WAIT command315
WARNING record172262
welcmsg.scr320
WIN.INI file

configuration commands21
configuring49
TCIP/IP entries341

Windows input file47
WindowSize command21
WPARAM parameter5053
X
X12

destination segment101
destination tables

bypassing102
envelopes100
491



Expedite Base for Windows Programming Guide
492


	Expedite Base for Windows® Programming Guide
	Contents
	To the reader
	Who should read this book
	Terminology conventions
	Type conventions
	How this book is organized
	Summary of changes
	Related books

	Introducing Expedite Base for Windows
	Migrating to Version 4.7
	Understanding Information Exchange
	Using accounts, user IDs, and passwords
	Understanding an Information Exchange session
	Sending and receiving data
	Transferring files
	Transferring EDI data
	Transferring electronic mail

	Identifying Information Exchange error messages
	Requesting Information Exchange acknowledgments
	Providing security
	Working with libraries
	Connecting to the network
	Understanding Information Exchange Administration Services

	Installing Expedite Base for Windows
	Understanding what you need to use Expedite Base for Windows
	Hardware and software requirements
	Connectivity requirements

	Running the installation program
	Installing Expedite Base for Windows
	Setting up the AT&T Net Client
	Manually dialing a session

	Understanding Expedite Base for Windows files
	Files in the Expedite Base installation directory
	Other important files
	Files in the samples directory
	Files in the samples\vb directory
	Files in the samples\vb\activex directory
	Files in the windows\system directory

	Understanding the Expedite Base for Windows configuration commands in the WIN.INI
	Setting the program screen display
	Displaying the main window
	Understanding Expedite Base for Windows functions accessed from the menu bar


	Getting a quick start
	Modifying the sample profile command file
	Modifying the sample message command file
	Running a sample session
	Viewing the display
	Verifying the session results


	Understanding Expedite Base for Windows
	Understanding command syntax
	Understanding the profile command file
	Reviewing examples of basein.pro

	Understanding the profile response file
	Reviewing an example of baseout.pro

	Understanding the message command file
	Reviewing examples of basein.msg

	Understanding the message response file
	Reviewing examples of baseout.msg

	Understanding the common data header
	Processing the message response file
	Checking the session return code
	Checking the command RETURN records
	Checking the SENT and RECEIVED records

	Using the temporary response file

	Designing your interface
	Understanding the users
	Understanding how your interface interacts with Expedite Base for Windows
	Programming your application to control Expedite Base for Windows
	Understanding Expedite Base for Windows programming considerations
	Understanding installation considerations
	Understanding interapplication communication
	Setting your application to configure the WIN.INI file
	Setting your application to load Expedite Base for Windows
	Setting your application to control Expedite Base for Windows functions

	Understanding message values returned after sending a message
	Setting your application to receive Expedite Base for Windows messages
	Reviewing an example of an application interface
	Other considerations for your application
	Where to read next


	Sending and receiving files
	Addressing files
	Using accounts and user IDs
	Using centralized Information Exchange alias tables
	Using distribution lists

	Sending and receiving e-mail
	Understanding ASCII text and binary files
	Sending and receiving text files
	Sending and receiving binary files

	Understanding the translate table
	Reviewing an example of the TRANSLATE parameter

	Recovery levels
	Checkpoint-level recovery
	Session-level recovery

	Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
	Restarting a session
	Reviewing examples of session restart
	Resetting a session
	Reviewing examples of session reset
	Checking the SENT and RECEIVED response records
	Checking return codes

	Using session-level recovery
	Understanding post-session processing for session-level recovery
	Processing the response file records
	Checking return codes
	Reviewing examples of session-level recovery

	Using multiple START and END commands with session-level recovery
	Reviewing examples using multiple Information Exchange sessions with session-level recovery

	Receiving multiple files
	Receiving specific files
	SEND and RECEIVE file number limits
	User-level recovery
	Checkpoint-level recovery
	File-level recovery
	Session-level recovery

	Examples of using Expedite Base for Windows
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5


	Sending and receiving EDI data
	Understanding how the network sends EDI data
	Understanding how Expedite Base for Windows sends EDI data
	Using EDI envelopes
	Resolving EDI destinations
	Bypassing tables
	Using EDI destination tables
	Using EDI qualifier tables
	Using centralized Information Exchange alias tables
	Using Information Exchange distribution lists

	Specifying Information Exchange control fields
	Providing a message name (MSGNAME)
	Providing a message sequence number (MSGSEQNO)
	Providing a user class (CLASS)
	Inserting blanks following EDI segments
	Using SENDEDI response records

	Receiving EDI data
	Creating tables for destination resolution
	Understanding the EDI qualifier table entry format
	Understanding the EDI destination table entry format
	Recovery levels

	Using checkpoint-level, file-level, and user-initiated recovery
	Understanding post-session processing for checkpoint-level, file-level, and user-initiated recovery
	Restarting a session
	Resetting a session
	Checking the SENT, NOTSENT, and RECEIVED response records
	Checking return codes

	Using session-level recovery
	Understanding post-session processing for session-level recovery
	Processing the response file records
	Checking return codes
	Reviewing examples of session-level recovery

	Using multiple START and END commands with session-level recovery
	Reviewing examples using multiple Information Exchange sessions with session-level recovery

	Receiving multiple files
	Receiving specific files
	SENDEDI and RECEIVEEDI file number limits
	User-level recovery
	Checkpoint-level recovery
	File-level recovery
	Session-level recovery

	Integrating with an EDI translator
	Examples of sending and receiving EDI data
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5


	Using Expedite Base for Windows profile commands
	Creating profiles
	Working with profile commands
	Encryption/decryption routines


	Using Expedite Base for Windows message commands
	Understanding command syntax examples
	Working with message commands
	LISTLIBRARIES command
	LISTMEMBERS command
	PURGE command
	PUTMEMBER command
	QUERY command
	RECEIVE command
	RECEIVEEDI command
	SEND command
	SENDEDI command


	Using Expedite Base for Windows message response records
	AUTOEND record
	AUTOSTART record
	AVAILABLE record
	LIBRARYLIST record
	MEMBERLIST record
	MEMBERPUT record
	MOVED record
	NOTSENT record
	RECEIVED record
	RETURN record
	SENT record
	SESSIONEND record
	STARTED record
	WARNING record

	Using additional features
	Compressing and decompressing data
	Using audit trails
	Retrieving audit trails

	Message audit record formats
	Querying a mailbox
	Using mailbox query with a panel-driven interface

	Using acknowledgments
	Working with libraries
	Adding and retrieving library members
	Identifying libraries and library members
	Using acknowledgments with libraries
	Understanding validations, payment levels, and authorizations with libraries
	Understanding access authority levels
	Understanding library charges

	Archiving and retrieving files
	Archiving all files
	Archiving selected files
	Retrieving files from the archive

	Traveling User feature
	Understanding validations, payment levels, and authorizations with trading partners
	Using command line parameters with the IEBASE command
	Submitting command line arguments

	Running Expedite Base for Windows in a separate directory

	Communicating with users on different operating systems
	Using the common data header
	Communicating with interfaces that do not support the CDH
	Sending files to an ASCII operating system
	Receiving files from an ASCII operating system
	Sending files to an EBCDIC operating system
	Receiving files from an EBCDIC operating system
	Using alternate translate tables
	Examples of sending and receiving files on different operating systems
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9


	The Expedite Base for Windows main window
	Main window example
	Display for a session with a delay
	Using the display status script
	Unused parameters for sessions
	Displaying text
	Using variables in your text
	Expedite Base for Windows display script


	Using the modem setup program and modem scripts
	Running the modem setup program
	Customizing the modem list in the modem setup program
	Adding a modem entry to the list
	Editing a modem entry you previously added to the list
	Deleting a modem entry you previously added to the list

	Creating modem scripts
	Using labels in modem scripts
	Using variables in modem scripts
	Using modem script commands
	CLEARBUFFER command
	CLOSEPORT command
	GETANSWER command
	GETVALUE command
	GO command
	IFANSWER command
	IFVALUE command
	OPENPORT command
	RETURN command
	SAY command
	SETLINE command
	SETPACING command
	WAIT command

	Sample modem scripts
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Using modem initialization and reset scripts
	Using a customized logon screen

	Using the connectivity log and trace files
	Using the connectivity log
	Using asynchronous communication with a network communication gateway
	Understanding the connectivity log
	Using the connectivity log for problem determination

	Using the trace files
	Using trace file parameters

	Learning from examples
	Modem trace example
	Connect script example
	Display trace example
	Command parser example

	Using the link trace file

	Using TCP/IP communications
	Preparing for TCP/IP communication
	Updating the TRANSMIT command
	Including the TCPCOMM command

	Updating hostname.fil
	TCP/IP entry in the WIN.INI file

	Expedite Base for Windows error codes and messages
	Expedite Base for Windows completion codes
	Expedite Base for Windows return codes
	Message command file syntax errors
	Profile command file syntax errors
	Network errors
	Modem script syntax errors
	Display status script syntax errors
	Communication device driver errors
	Parser errors
	Destination verification errors
	EDI errors
	General environment errors
	Session start and end errors
	PF key exit error
	Comm-Press error messages
	Internal communications errors
	Session errors
	Unexpected program errors


	Common data header
	Reserved file names and user classes
	Reserved file names for PATH statement
	Reserved file names for PATH parameter
	Reserved file names for IEPATH parameter
	Reserved file name for current directory
	Reserved user classes

	Information Exchange translate table
	ASCII TO EBCDIC
	EBCDIC TO ASCII

	Using data compression
	Understanding the Comm-Press files used with Expedite Base for Windows
	Compressing files with COMPRESS(Y)
	Compressing files with COMPRESS(T)
	Decompressing received compressed files
	Expedite Base for Windows considerations when using COMPRESS(Y) OR COMPRESS(T)
	Restart and recovery considerations with Comm-Press
	Error messages and return codes for data compression

	Glossary
	Index

